Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
372206b3
"...targets/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "e8be8548ee477e19550d84aa5a7ed03f2901dda5"
Unverified
Commit
372206b3
authored
Oct 14, 2022
by
Ted Themistokleous
Committed by
GitHub
Oct 14, 2022
Browse files
Merge branch 'develop' into fix_parse_if
parents
fdc182c8
01d0ecfc
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
123 additions
and
27 deletions
+123
-27
src/onnx/parse_batchnorm.cpp
src/onnx/parse_batchnorm.cpp
+11
-10
test/onnx/batch_norm_rank_2_test.onnx
test/onnx/batch_norm_rank_2_test.onnx
+32
-0
test/onnx/gen_onnx.py
test/onnx/gen_onnx.py
+18
-17
test/onnx/onnx_test.cpp
test/onnx/onnx_test.cpp
+25
-0
test/onnx/verify_onnx.cpp
test/onnx/verify_onnx.cpp
+37
-0
No files found.
src/onnx/parse_batchnorm.cpp
View file @
372206b3
...
@@ -54,18 +54,19 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
...
@@ -54,18 +54,19 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
MIGRAPHX_THROW
(
"PARSE_BATCHNORM: argument scale, bias, mean, or var rank != 1"
);
MIGRAPHX_THROW
(
"PARSE_BATCHNORM: argument scale, bias, mean, or var rank != 1"
);
}
}
if
(
x_lens
.
size
()
==
1
)
auto
x_rank
=
x_lens
.
size
();
if
(
x_rank
==
1
or
x_rank
==
2
)
{
{
auto
rt
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
0.5
}});
auto
rt
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
0.5
}});
auto
eps
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
epsilon
}});
auto
eps
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
epsilon
}});
auto
n
0
=
info
.
add_broadcastable_binary_op
(
"sub"
,
args
[
0
],
args
[
3
]);
auto
n
umer
=
info
.
add_broadcastable_binary_op
(
"sub"
,
args
[
0
],
args
[
3
]);
auto
d0
=
info
.
add_broadcastable_binary_op
(
"add"
,
args
[
4
],
eps
);
auto
var_eps
=
info
.
add_broadcastable_binary_op
(
"add"
,
args
[
4
],
eps
);
auto
d
1
=
info
.
add_broadcastable_binary_op
(
"pow"
,
d0
,
rt
);
auto
d
enom
=
info
.
add_broadcastable_binary_op
(
"pow"
,
var_eps
,
rt
);
auto
div0
=
info
.
add_broadcastable_binary_op
(
"div"
,
n
0
,
d1
);
auto
div0
=
info
.
add_broadcastable_binary_op
(
"div"
,
n
umer
,
denom
);
auto
r0
=
info
.
add_broadcastable_binary_op
(
"mul"
,
div0
,
args
[
1
]);
auto
r0
=
info
.
add_broadcastable_binary_op
(
"mul"
,
div0
,
args
[
1
]);
return
info
.
add_broadcastable_binary_op
(
"add"
,
r0
,
args
[
2
]);
return
info
.
add_broadcastable_binary_op
(
"add"
,
r0
,
args
[
2
]);
}
}
else
if
(
x_
lens
.
size
()
>
2
)
else
if
(
x_
rank
>
2
)
{
{
// unsqueeze tensors of shape (C) to broadcast correctly
// unsqueeze tensors of shape (C) to broadcast correctly
std
::
vector
<
int64_t
>
unsqueeze_axes
(
x_lens
.
size
()
-
2
);
std
::
vector
<
int64_t
>
unsqueeze_axes
(
x_lens
.
size
()
-
2
);
...
@@ -89,7 +90,7 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
...
@@ -89,7 +90,7 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
}
}
else
else
{
{
//
num dims either 0 or 2
//
rank == 0
MIGRAPHX_THROW
(
"PARSE_BATCHNORM: rank "
+
std
::
to_string
(
x_lens
.
size
())
+
MIGRAPHX_THROW
(
"PARSE_BATCHNORM: rank "
+
std
::
to_string
(
x_lens
.
size
())
+
" input tensor, unhandled data format"
);
" input tensor, unhandled data format"
);
}
}
...
...
test/onnx/batch_norm_
invalid_
rank_test.onnx
→
test/onnx/batch_norm_rank_
2_
test.onnx
View file @
372206b3
batch_norm_
invalid_
rank_test:
batch_norm_rank_
2_
test:
7
J
x
x
scale
scale
bias
bias
mean
mean
variancey"BatchNormalizationbatch_norm_invalid_rank_testZ
variancey"BatchNormalization*
epsilon75batch_norm_rank_2_testZ
x
x
Z
Z
scale
scale
Z
Z
bias
bias
Z
Z
mean
mean
Z
Z
variance
variance
b
b
y
y
B
B
\ No newline at end of file
\ No newline at end of file
test/onnx/gen_onnx.py
View file @
372206b3
...
@@ -331,6 +331,24 @@ def batch_norm_flat_test():
...
@@ -331,6 +331,24 @@ def batch_norm_flat_test():
return
([
node
],
[
x
,
scale
,
bias
,
mean
,
var
],
[
out
])
return
([
node
],
[
x
,
scale
,
bias
,
mean
,
var
],
[
out
])
@
onnx_test
def
batch_norm_rank_2_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
2
,
5
])
scale
=
helper
.
make_tensor_value_info
(
'scale'
,
TensorProto
.
FLOAT
,
[
5
])
bias
=
helper
.
make_tensor_value_info
(
'bias'
,
TensorProto
.
FLOAT
,
[
5
])
mean
=
helper
.
make_tensor_value_info
(
'mean'
,
TensorProto
.
FLOAT
,
[
5
])
var
=
helper
.
make_tensor_value_info
(
'variance'
,
TensorProto
.
FLOAT
,
[
5
])
out
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
2
,
5
])
node
=
onnx
.
helper
.
make_node
(
'BatchNormalization'
,
inputs
=
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance'
],
outputs
=
[
'y'
],
epsilon
=
1e-6
)
return
([
node
],
[
x
,
scale
,
bias
,
mean
,
var
],
[
out
])
@
onnx_test
@
onnx_test
def
batch_norm_1d_test
():
def
batch_norm_1d_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT16
,
[
2
,
3
,
4
])
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT16
,
[
2
,
3
,
4
])
...
@@ -385,23 +403,6 @@ def batch_norm_3d_test():
...
@@ -385,23 +403,6 @@ def batch_norm_3d_test():
return
([
node
],
[
x
,
scale
,
bias
,
mean
,
var
],
[
out
])
return
([
node
],
[
x
,
scale
,
bias
,
mean
,
var
],
[
out
])
@
onnx_test
def
batch_norm_invalid_rank_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
8
,
8
])
scale
=
helper
.
make_tensor_value_info
(
'scale'
,
TensorProto
.
FLOAT
,
[
8
])
bias
=
helper
.
make_tensor_value_info
(
'bias'
,
TensorProto
.
FLOAT
,
[
8
])
mean
=
helper
.
make_tensor_value_info
(
'mean'
,
TensorProto
.
FLOAT
,
[
8
])
var
=
helper
.
make_tensor_value_info
(
'variance'
,
TensorProto
.
FLOAT
,
[
8
])
out
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT
,
[
8
,
8
])
node
=
onnx
.
helper
.
make_node
(
'BatchNormalization'
,
inputs
=
[
'x'
,
'scale'
,
'bias'
,
'mean'
,
'variance'
],
outputs
=
[
'y'
])
return
([
node
],
[
x
,
scale
,
bias
,
mean
,
var
],
[
out
])
@
onnx_test
@
onnx_test
def
batch_norm_invalid_bias_rank_test
():
def
batch_norm_invalid_bias_rank_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
4
])
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
2
,
3
,
4
,
4
])
...
...
test/onnx/onnx_test.cpp
View file @
372206b3
...
@@ -394,6 +394,31 @@ TEST_CASE(batch_norm_flat_test)
...
@@ -394,6 +394,31 @@ TEST_CASE(batch_norm_flat_test)
EXPECT
(
p
==
prog
);
EXPECT
(
p
==
prog
);
}
}
TEST_CASE
(
batch_norm_rank_2_test
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
x
=
mm
->
add_parameter
(
"x"
,
{
migraphx
::
shape
::
float_type
,
{
2
,
5
}});
auto
scale
=
mm
->
add_parameter
(
"scale"
,
{
migraphx
::
shape
::
float_type
,
{
5
}});
auto
bias
=
mm
->
add_parameter
(
"bias"
,
{
migraphx
::
shape
::
float_type
,
{
5
}});
auto
mean
=
mm
->
add_parameter
(
"mean"
,
{
migraphx
::
shape
::
float_type
,
{
5
}});
auto
var
=
mm
->
add_parameter
(
"variance"
,
{
migraphx
::
shape
::
float_type
,
{
5
}});
auto
rt
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-6
f
}});
auto
numer
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"sub"
),
{
x
,
mean
});
auto
var_eps
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
var
,
eps
});
auto
denom
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
scale
});
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
r0
,
bias
});
auto
prog
=
optimize_onnx
(
"batch_norm_rank_2_test.onnx"
);
EXPECT
(
p
==
prog
);
}
TEST_CASE
(
batch_norm_1d_test
)
TEST_CASE
(
batch_norm_1d_test
)
{
{
migraphx
::
program
p
;
migraphx
::
program
p
;
...
...
test/onnx/verify_onnx.cpp
View file @
372206b3
...
@@ -115,6 +115,43 @@ TEST_CASE(batch_norm_flat_test)
...
@@ -115,6 +115,43 @@ TEST_CASE(batch_norm_flat_test)
EXPECT
(
migraphx
::
verify_range
(
result_vector
,
gold
));
EXPECT
(
migraphx
::
verify_range
(
result_vector
,
gold
));
}
}
TEST_CASE
(
batch_norm_rank_2_test
)
{
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"batch_norm_rank_2_test.onnx"
);
p
.
compile
(
migraphx
::
ref
::
target
{});
migraphx
::
shape
x_shape
{
migraphx
::
shape
::
float_type
,
{
2
,
5
}};
migraphx
::
shape
c_shape
(
migraphx
::
shape
::
float_type
,
{
5
});
std
::
vector
<
float
>
x_data
=
{
1.
,
2.
,
3.
,
4.
,
5.
,
6.
,
7.
,
8.
,
9.
,
10.
};
std
::
vector
<
float
>
scale_data
(
5
,
1.
);
std
::
vector
<
float
>
bias_data
(
5
,
0.
);
std
::
vector
<
float
>
mean_data
=
{
1.
,
2.
,
1.
,
2.
,
1.
};
std
::
vector
<
float
>
variance_data
(
5
,
0.5
);
migraphx
::
parameter_map
params
;
params
[
"x"
]
=
migraphx
::
argument
(
x_shape
,
x_data
.
data
());
params
[
"scale"
]
=
migraphx
::
argument
(
c_shape
,
scale_data
.
data
());
params
[
"bias"
]
=
migraphx
::
argument
(
c_shape
,
bias_data
.
data
());
params
[
"mean"
]
=
migraphx
::
argument
(
c_shape
,
mean_data
.
data
());
params
[
"variance"
]
=
migraphx
::
argument
(
c_shape
,
variance_data
.
data
());
auto
result
=
p
.
eval
(
params
).
back
();
std
::
vector
<
float
>
result_vector
;
result
.
visit
([
&
](
auto
output
)
{
result_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
std
::
vector
<
float
>
gold
=
{
0.
,
0.
,
2.8284243
,
2.8284243
,
5.65684859
,
7.07106074
,
7.07106074
,
9.89948504
,
9.89948504
,
12.72790933
};
EXPECT
(
migraphx
::
verify_range
(
result_vector
,
gold
));
}
TEST_CASE
(
batch_norm_1d_test
)
TEST_CASE
(
batch_norm_1d_test
)
{
{
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"batch_norm_1d_test.onnx"
);
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"batch_norm_1d_test.onnx"
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment