Commit 32b83c9c authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/AMDMIGraphX into inner_bcast_fix

parents 92f5a6cd 434a06cf
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_SIMPLIFY_DYN_OPS_HPP
#define MIGRAPHX_GUARD_RTGLIB_SIMPLIFY_DYN_OPS_HPP
#include <string>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct module;
/**
* Convert dynamic ops to their static version if possible.
* Should be run after the split_single_dyn_dims pass.
*/
struct MIGRAPHX_EXPORT simplify_dyn_ops
{
std::string name() const { return "simplify_dyn_ops"; }
void apply(module& m) const;
};
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -38,6 +38,7 @@ struct module;
*/
struct MIGRAPHX_EXPORT simplify_reshapes
{
size_t depth = 4;
std::string name() const { return "simplify_reshapes"; }
void apply(module& m) const;
};
......
......@@ -86,7 +86,7 @@ inline std::string join_strings(Strings strings, const std::string& delim)
inline std::vector<std::string> split_string(const std::string& s, char delim)
{
std::vector<std::string> elems;
std::stringstream ss(s + ' ');
std::stringstream ss(s + delim);
std::string item;
while(std::getline(ss, item, delim))
{
......@@ -149,6 +149,10 @@ interpolate_string(const std::string& input, F f, std::string start = "${", std:
result.append(it, next_start);
if(next_start == input.end())
break;
if(next_end == input.end())
{
throw std::runtime_error("Unbalanced brackets");
}
auto r = f(next_start + start.size(), next_end);
result.append(r.begin(), r.end());
it = next_end + end.size();
......
......@@ -389,7 +389,7 @@ void instruction::print(std::ostream& os,
if(not ins->module_inputs().empty())
{
std::string delim = ", [";
for(auto&& mod_arg : ins->module_inputs())
for(const const_module_ref& mod_arg : ins->module_inputs())
{
os << delim << mod_arg->name();
delim = ", ";
......
......@@ -21,6 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/instruction.hpp>
#include <migraphx/load_save.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/json.hpp>
......@@ -60,9 +61,29 @@ void save(const program& p, const std::string& filename, const file_options& opt
{
write_buffer(filename, save_buffer(p, options));
}
// MIOpen doesn't support serializing fusion plans with Find-2.0 APIs
void print_miopen_warning(const program& p)
{
auto mods = p.get_modules();
if(std::any_of(mods.begin(), mods.end(), [](const auto* m) {
return std::any_of(m->begin(), m->end(), [](const instruction& i) {
return i.name() == "gpu::miopen_fusion";
});
}))
{
std::cout << "[WARNING]: Program has miopen_fusion instructions for which tuned solutions "
"are not stored inside serialized MIGraphX program. Consider serializing with "
"MIGRAPHX_DISABLE_MIOPEN_FUSION=1 flag set."
<< std::endl;
;
}
}
std::vector<char> save_buffer(const program& p, const file_options& options)
{
value v = p.to_value();
print_miopen_warning(p);
std::vector<char> buffer;
if(options.format == "msgpack")
{
......
......@@ -23,9 +23,9 @@
*/
#include <migraphx/memory_coloring.hpp>
#include <migraphx/module.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/algorithm.hpp>
#include <migraphx/ranges.hpp>
......@@ -382,7 +382,8 @@ void memory_coloring::apply(module& m) const
auto s = ins->get_shape();
std::size_t offset = seg.first * alignment;
assert(offset < n);
m.replace_instruction(ins, op::load{s, offset}, mem);
m.replace_instruction(
ins, make_op("load", {{"shape", to_value(s)}, {"offset", offset}}), mem);
}
// Replace zero allocation
......@@ -391,7 +392,8 @@ void memory_coloring::apply(module& m) const
if(ins->name() != allocation_op)
continue;
assert(ins->get_shape().bytes() == 0);
m.replace_instruction(ins, op::load{ins->get_shape(), 0}, mem);
m.replace_instruction(
ins, make_op("load", {{"shape", to_value(ins->get_shape())}, {"offset", 0}}), mem);
}
// Remove scratch parameter if its not used
......
......@@ -873,12 +873,11 @@ module::print_py(std::ostream& os,
if(ins->name() == "@literal")
{
os << mname << ".add_literal(";
bool use_abs = false;
ins->get_literal().visit([&](auto v) {
use_abs = std::none_of(v.begin(), v.end(), [](auto x) { return x < 0; });
});
const bool use_abs = false;
// Disable abs for now
use_abs = false;
// ins->get_literal().visit([&](auto v) {
// use_abs = std::none_of(v.begin(), v.end(), [](auto x) { return x < 0; });
// });
if(use_abs)
os << "migraphx.abs_literal(";
os << "migraphx.generate_argument(";
......
......@@ -25,6 +25,33 @@
#include <migraphx/serialize.hpp>
#include <msgpack.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
// Leave an extra byte for error checking
constexpr std::size_t msgpack_size_limit = std::numeric_limits<uint32_t>::max() - 1;
template <class Range>
std::size_t msgpack_chunk_size(const Range& r)
{
return 1 + (r.size() - 1) / msgpack_size_limit;
}
template <class Iterator, class F>
void msgpack_chunk_for_each(Iterator start, Iterator last, F f)
{
while(std::distance(start, last) > msgpack_size_limit)
{
auto next = std::next(start, msgpack_size_limit);
f(start, next);
start = next;
}
f(start, last);
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
namespace msgpack {
MSGPACK_API_VERSION_NAMESPACE(MSGPACK_DEFAULT_API_NS)
{
......@@ -63,16 +90,31 @@ MSGPACK_API_VERSION_NAMESPACE(MSGPACK_DEFAULT_API_NS)
break;
}
case msgpack::type::BIN: {
// For backwards compatibility
v = migraphx::value::binary{o.via.bin.ptr, o.via.bin.size};
break;
}
case msgpack::type::ARRAY: {
migraphx::value r = migraphx::value::array{};
std::for_each(
o.via.array.ptr,
o.via.array.ptr + o.via.array.size,
[&](const msgpack::object& so) { r.push_back(so.as<migraphx::value>()); });
v = r;
if(o.via.array.size != 0 and o.via.array.ptr->type == msgpack::type::BIN)
{
auto bin = migraphx::value::binary{};
std::for_each(
o.via.array.ptr,
o.via.array.ptr + o.via.array.size,
[&](const msgpack::object& so) {
bin.insert(bin.end(), so.via.bin.ptr, so.via.bin.ptr + so.via.bin.size);
});
v = bin;
}
else
{
migraphx::value r = migraphx::value::array{};
std::for_each(
o.via.array.ptr,
o.via.array.ptr + o.via.array.size,
[&](const msgpack::object& so) { r.push_back(so.as<migraphx::value>()); });
v = r;
}
break;
}
case msgpack::type::MAP: {
......@@ -102,8 +144,12 @@ MSGPACK_API_VERSION_NAMESPACE(MSGPACK_DEFAULT_API_NS)
{
const auto* data = reinterpret_cast<const char*>(x.data());
auto size = x.size();
o.pack_bin(size);
o.pack_bin_body(data, size);
o.pack_array(migraphx::msgpack_chunk_size(x));
migraphx::msgpack_chunk_for_each(
data, data + size, [&](const char* start, const char* last) {
o.pack_bin(last - start);
o.pack_bin_body(start, last - start);
});
return o;
}
};
......@@ -129,6 +175,8 @@ MSGPACK_API_VERSION_NAMESPACE(MSGPACK_DEFAULT_API_NS)
o.pack_array(0);
return;
}
if(v.size() > migraphx::msgpack_size_limit)
MIGRAPHX_THROW("Size is too large for msgpack");
if(not v.front().get_key().empty())
{
o.pack_map(v.size());
......
......@@ -26,7 +26,7 @@
#include <migraphx/normalize_attributes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/op/common.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -49,6 +49,10 @@ auto tune_attribute(const std::vector<int64_t>& vec,
Message m)
{
std::vector<int64_t> result(vec);
if(result.empty())
{
return result;
};
int64_t n_rank = input_shape.ndim();
std::vector<op::normalize_attribute> vec_attrs = val.to_vector<op::normalize_attribute>();
if(contains(vec_attrs, op::normalize_attribute::use_output))
......@@ -188,20 +192,27 @@ bool normalize_attributes(operation& op, const shape& input_shape)
auto val = op.to_value();
if(attrs.contains("normalize_padding"))
{
auto padding = val.at(attrs.at("normalize_padding").to<std::string>());
auto padding_size = padding.size();
auto padding_start = 2;
if(padding_size == 2 * (input_shape.ndim() - padding_start))
tuned = true;
else if(padding_size != (input_shape.ndim() - padding_start))
MIGRAPHX_THROW("inconsistent padding size");
else
bool use_auto_padding =
(val.contains("padding_mode") and
(val.at("padding_mode").to<int>() != migraphx::op::padding_mode_t::default_));
if(not use_auto_padding)
{
auto result = tune_pad_attribute(padding);
val["padding"] = result;
op.from_value(val);
tuned = true;
auto padding = val.at(attrs.at("normalize_padding").to<std::string>());
auto padding_size = padding.size();
auto padding_start = 2;
if(padding_size == 2 * (input_shape.ndim() - padding_start))
tuned = true;
else if(padding_size != (input_shape.ndim() - padding_start))
{
MIGRAPHX_THROW("normalize_attributes: inconsistent padding vector size ");
}
else
{
auto result = tune_pad_attribute(padding);
val["padding"] = result;
op.from_value(val);
tuned = true;
}
}
}
if(not attrs.contains("normalize_axes"))
......@@ -251,5 +262,22 @@ bool normalize_attributes(operation& op, const shape& input_shape)
return tuned;
}
std::vector<int64_t> normalize_axes(const std::vector<int64_t>& axes,
const shape& input_shape,
const value& attr_val,
const std::string& prefix)
{
return tune_attribute(axes, {}, attr_val, input_shape, [&] { return prefix; });
}
std::vector<int64_t> normalize_indices(const std::vector<int64_t>& indices,
const std::vector<int64_t>& axes,
const shape& input_shape,
const value& attr_val,
const std::string& prefix)
{
return tune_attribute(indices, axes, attr_val, input_shape, [&] { return prefix; });
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -117,6 +117,7 @@ struct onnx_parser
parse_graph(module* mod, const onnx::GraphProto& graph, bool inlining = false);
literal parse_value(const onnx::AttributeProto& attr) const;
literal parse_tensor(const onnx::TensorProto& t) const;
shape parse_type(const onnx::TypeProto& t) const;
shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims) const;
};
......
......@@ -357,10 +357,9 @@ parse_inputs(const onnx_parser& parser,
}
shape s;
std::vector<std::size_t> dims;
if(parser.map_input_dims.count(name) > 0)
{
dims = parser.map_input_dims.at(name);
std::vector<std::size_t> dims = parser.map_input_dims.at(name);
s = parser.parse_type(input.type(), dims);
}
else if(parser.map_dyn_input_dims.count(name) > 0)
......@@ -370,7 +369,7 @@ parse_inputs(const onnx_parser& parser,
}
else
{
s = parser.parse_type(input.type(), dims);
s = parser.parse_type(input.type());
}
mod_insts[name] = mod->add_parameter(name, s);
}
......@@ -553,14 +552,9 @@ literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
}
MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
}
shape onnx_parser::parse_type(const onnx::TypeProto& t,
const std::vector<std::size_t>& input_dims) const
shape onnx_parser::parse_type(const onnx::TypeProto& t) const
{
shape::type_t shape_type = get_type(t.tensor_type().elem_type());
if(not input_dims.empty())
{
return {shape_type, input_dims};
}
std::vector<shape::dynamic_dimension> dynamic_dims;
auto&& tensor_dims = t.tensor_type().shape().dim();
......@@ -590,6 +584,15 @@ shape onnx_parser::parse_type(const onnx::TypeProto& t,
return shape_from_dyn_dims(shape_type, dynamic_dims);
}
shape onnx_parser::parse_type(const onnx::TypeProto& t,
const std::vector<std::size_t>& input_dims) const
{
shape::type_t shape_type = get_type(t.tensor_type().elem_type());
if(input_dims.empty())
return {shape_type};
return {shape_type, input_dims};
}
shape::type_t get_type(int dtype)
{
switch(dtype)
......
......@@ -25,6 +25,7 @@
#include <migraphx/ranges.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/stringutils.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -39,16 +40,38 @@ struct parse_constant : op_parser<parse_constant>
onnx_parser::node_info info,
const std::vector<instruction_ref>& /*args*/) const
{
literal v = parser.parse_value(info.attributes.at("value"));
static const std::vector<std::string> attributes = {
"value", "value_float", "value_floats", "value_int", "value_ints"};
std::vector<std::string> present_attributes;
std::copy_if(attributes.begin(),
attributes.end(),
std::back_inserter(present_attributes),
[&](const std::string& a) { return contains(info.attributes, a); });
if(present_attributes.empty())
{
MIGRAPHX_THROW("Constant node does not contain any supported attribute");
}
if(present_attributes.size() > 1)
{
MIGRAPHX_THROW("Constant contains multiple attributes: " +
join_strings(std::move(present_attributes), ", "));
}
// cppcheck-suppress accessMoved
auto&& attr = info.attributes[present_attributes[0]];
literal v = parser.parse_value(attr);
// return empty literal
if(v.get_shape().elements() == 0)
{
return info.add_literal(literal{v.get_shape().type()});
}
auto dim_size = info.attributes.at("value").t().dims_size();
// if dim_size is 0, it is a scalar
if(dim_size == 0)
if(attr.has_t() and attr.t().dims_size() == 0)
{
migraphx::shape scalar_shape{v.get_shape().type()};
return info.add_literal(migraphx::literal{scalar_shape, v.data()});
......
......@@ -55,9 +55,6 @@ struct parse_constant_of_shape : op_parser<parse_constant_of_shape>
l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
}
// input is empty, output is a scalar
auto type = l_val.get_shape().type();
if(args.empty())
{
MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
......@@ -65,6 +62,8 @@ struct parse_constant_of_shape : op_parser<parse_constant_of_shape>
else
{
migraphx::shape s;
// input is empty, output is a scalar
auto type = l_val.get_shape().type();
// empty input tensor, output is a scalar
if(args[0]->get_shape().elements() == 0)
{
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -151,26 +151,6 @@ struct parse_pooling : op_parser<parse_pooling>
kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
}
if(contains(info.attributes, "auto_pad"))
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW(
"PARSE_POOLING: Auto padding pooling with dynamic input shape not supported");
}
else
{
values["padding"].clear();
// return paddings could be empty, then setting to 0 for no padding
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
{1, 1},
in_shape.lens(),
paddings);
}
}
if(paddings.size() != 2 * kdims)
{
paddings.resize(kdims * 2);
......@@ -192,6 +172,36 @@ struct parse_pooling : op_parser<parse_pooling>
// used to calculate the supposed output shape
std::vector<int64_t> orig_padding = paddings;
// TODO: add parsing for dilations
if(contains(info.attributes, "auto_pad") and
to_upper(info.attributes["auto_pad"].s()) != "NOTSET")
{
auto auto_pad = to_upper(info.attributes["auto_pad"].s());
// don't use the given padding sizes, if any
// values["padding"].clear();
if(in_shape.dynamic())
{
// set padding_mode to trigger auto padding at runtime
bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
values["padding_mode"] = is_same_upper ? to_value(op::padding_mode_t::same_upper)
: to_value(op::padding_mode_t::same_lower);
}
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
std::vector<size_t>(in_shape.ndim() - 2, 1),
in_shape.lens(),
paddings);
values["padding"] = paddings;
// default padding_mode indicates that padding sizes are not calculated dynamically
values["padding_mode"] = migraphx::op::padding_mode_t::default_;
}
}
std::vector<int64_t> slice_start;
std::vector<int64_t> slice_end;
tune_padding_size(values, paddings, count_include_pad, slice_start);
......@@ -208,8 +218,9 @@ struct parse_pooling : op_parser<parse_pooling>
orig_padding.insert(orig_padding.begin(), 2, 0);
op::pad pad{orig_padding, 0.0f};
shape padded_shape = pad.compute_shape({l0->get_shape()});
auto out_lens = make_op("pooling", values).compute_shape({padded_shape}).lens();
// make an op just to get its output shape
auto out_lens = make_op("pooling", values).compute_shape({padded_shape}).lens();
// compute slice_end information
slice_end.resize(slice_start.size());
std::transform(out_lens.begin() + 2,
......
......@@ -96,7 +96,7 @@ struct parse_randomuniform_ops : op_parser<parse_randomuniform_ops>
if(contains(info.attributes, "seed"))
gen.seed(info.attributes.at("seed").f());
std::uniform_real_distribution<> d(high, low);
std::uniform_real_distribution<> d(low, high);
std::vector<double> rand_vals(out_shape.elements());
std::generate(rand_vals.begin(), rand_vals.end(), [&]() { return d(gen); });
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -97,22 +97,19 @@ const auto& get_original_idx_op(const std::string& mode)
static std::vector<int>
calc_neighbor_points(const std::vector<std::vector<std::vector<std::size_t>>>& vvv_ind,
int i_dim,
const std::vector<std::vector<std::size_t>>& vec_dims,
std::vector<std::vector<std::size_t>> vec_dims,
const shape& in_s)
{
if(i_dim == vvv_ind.size())
{
std::vector<int> vec_ind;
vec_ind.resize(vec_dims.size());
std::vector<int> vec_ind(vec_dims.size());
std::transform(vec_dims.begin(), vec_dims.end(), vec_ind.begin(), [&](auto idx) {
return static_cast<int>(in_s.index(idx));
});
return vec_ind;
}
const auto& vv_ind = vvv_ind[i_dim];
const auto& vv_lo = vv_ind.at(0);
const auto& vv_lo = vvv_ind[i_dim][0];
std::vector<std::vector<std::size_t>> vec_dims1;
for(std::size_t start = 0; start < vec_dims.size(); start += vv_lo.size())
{
......@@ -126,8 +123,8 @@ calc_neighbor_points(const std::vector<std::vector<std::vector<std::size_t>>>& v
});
}
const auto& vv_hi = vv_ind.at(1);
for(std::size_t start = 0; start < vec_dims.size(); start += vv_lo.size())
const auto& vv_hi = vvv_ind[i_dim][1];
for(std::size_t start = 0; start < vec_dims.size(); start += vv_hi.size())
{
std::transform(vv_hi.begin(),
vv_hi.end(),
......@@ -138,8 +135,8 @@ calc_neighbor_points(const std::vector<std::vector<std::vector<std::size_t>>>& v
return dim;
});
}
return calc_neighbor_points(vvv_ind, i_dim + 1, vec_dims1, in_s);
vec_dims.clear();
return calc_neighbor_points(vvv_ind, i_dim + 1, std::move(vec_dims1), in_s);
}
static std::string get_coord_trans_mode(const onnx_parser::attribute_map& attr)
......@@ -240,7 +237,7 @@ struct parse_resize : op_parser<parse_resize>
auto arg_out_s = arg->eval();
check_arg_empty(arg_out_s,
"PARSE_" + opd.op_name + ": dynamic output size is not supported!");
arg_out_s.visit([&](auto ol) { out_lens.assign(ol.begin(), ol.end()); });
arg_out_s.visit([&](const auto& ol) { out_lens.assign(ol.begin(), ol.end()); });
if(out_lens.size() != in_lens.size())
{
......@@ -267,7 +264,7 @@ struct parse_resize : op_parser<parse_resize>
"PARSE_" + opd.op_name +
": dynamic input scale is not supported!");
arg_scale.visit([&](auto v) { vec_scale.assign(v.begin(), v.end()); });
arg_scale.visit([&](const auto& v) { vec_scale.assign(v.begin(), v.end()); });
if(in_lens.size() != vec_scale.size())
{
MIGRAPHX_THROW("PARSE_" + opd.op_name +
......@@ -300,15 +297,15 @@ struct parse_resize : op_parser<parse_resize>
// map out_idx to in_idx
auto nearest_op = get_nearest_op(nearest_mode);
shape_for_each(out_s, [&](auto idx) {
auto in_idx = idx;
shape_for_each(out_s, [&](const auto& out_idx_v, size_t out_idx) {
std::vector<size_t> in_idx(out_idx_v.size());
for(auto ii = 0; ii < in_lens.size(); ++ii)
{
auto idx_val = idx_op(in_lens[ii], out_lens[ii], idx[ii], vec_scale[ii]);
auto idx_val = idx_op(in_lens[ii], out_lens[ii], out_idx_v[ii], vec_scale[ii]);
in_idx[ii] = nearest_op(in_lens[ii], idx_val);
}
ind[out_s.index(idx)] = static_cast<int64_t>(in_s.index(in_idx));
ind[out_idx] = static_cast<int64_t>(in_s.index(in_idx));
});
shape ind_s{shape::int32_type, out_lens};
......@@ -323,24 +320,21 @@ struct parse_resize : op_parser<parse_resize>
// get the number of dimensions
std::size_t n_dim = out_lens.size();
std::vector<std::vector<std::size_t>> vv_ind(2, std::vector<std::size_t>(out_elements));
std::vector<std::vector<std::vector<std::size_t>>> vvv_ind(n_dim, vv_ind);
auto vvv_ind = std::vector(n_dim, std::vector(2, std::vector<size_t>(out_elements)));
std::vector<std::vector<float>> delta(n_dim, std::vector<float>(out_elements));
shape_for_each(out_s, [&](auto idx) {
auto in_idx = idx;
auto out_idx = out_s.index(idx);
shape_for_each(out_s, [&](const auto& out_idx_v, size_t out_idx) {
for(auto ii = 0; ii < in_lens.size(); ++ii)
{
auto idx_val = idx_op(in_lens[ii], out_lens[ii], idx[ii], vec_scale[ii]);
auto idx_val = idx_op(in_lens[ii], out_lens[ii], out_idx_v[ii], vec_scale[ii]);
vvv_ind[ii][0][out_idx] = nearest_floor(in_lens[ii], idx_val);
vvv_ind[ii][1][out_idx] = nearest_ceil(in_lens[ii], idx_val);
delta[ii][out_idx] = idx_val - vvv_ind[ii][0][out_idx];
}
});
std::vector<std::vector<std::size_t>> vec_dims(out_elements);
auto ind = calc_neighbor_points(vvv_ind, 0, vec_dims, in_s);
auto ind = calc_neighbor_points(
vvv_ind, 0, std::vector<std::vector<std::size_t>>(out_elements), in_s);
auto ind_lens = out_lens;
ind_lens[0] *= (std::size_t{1} << n_dim);
shape ind_s{shape::int32_type, ind_lens};
......
......@@ -37,15 +37,18 @@ struct parse_roialign : op_parser<parse_roialign>
std::vector<op_desc> operators() const { return {{"RoiAlign"}}; }
instruction_ref parse(const op_desc& /*opd*/,
const onnx_parser& /*parser*/,
const onnx_parser& parser,
onnx_parser::node_info info,
const std::vector<instruction_ref>& args) const
{
std::string coord_trans_mode = "half_pixel";
if(contains(info.attributes, "coordinate_transformation_mode"))
std::string coord_trans_mode =
parser.opset_version >= 16 ? "half_pixel" : "output_half_pixel";
if(const auto* a = "coordinate_transformation_mode"; contains(info.attributes, a))
{
coord_trans_mode = info.attributes.at("coordinate_transformation_mode").s();
coord_trans_mode = info.attributes.at(a).s();
}
if(not contains({"half_pixel", "output_half_pixel"}, coord_trans_mode))
{
MIGRAPHX_THROW("coordinate_transformation_mode \"" + coord_trans_mode +
......
......@@ -34,16 +34,65 @@ namespace onnx {
struct parse_slice : op_parser<parse_slice>
{
std::vector<op_desc> operators() const { return {{"Slice"}}; }
struct slice_desc
{
op::slice op;
std::vector<instruction_ref> op_args;
std::vector<int64_t> steps;
std::vector<int64_t> raxes;
void always_insert(instruction_ref arg) { op_args.insert(op_args.begin(), arg); }
std::vector<int64_t> insert(instruction_ref arg)
{
std::vector<int64_t> result;
migraphx::argument arg_value = arg->eval();
if(arg_value.empty())
{
op_args.insert(op_args.begin(), arg);
}
else
{
arg_value.visit([&](auto s) { result.assign(s.begin(), s.end()); });
}
return result;
}
};
instruction_ref parse(const op_desc& /*opd*/,
const onnx_parser& parser,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
op::slice op;
auto sd = construct_slice_desc(parser, info, args);
auto ins = info.add_instruction(sd.op, sd.op_args);
if(not sd.raxes.empty())
{
ins = info.add_instruction(make_op("reverse", {{"axes", sd.raxes}}), ins);
}
// If any steps are other than default 1, add a "steps" op
if(std::any_of(sd.steps.begin(), sd.steps.end(), [](auto s) { return std::abs(s) != 1; }))
{
std::vector<int64_t> nsteps;
std::transform(sd.steps.begin(),
sd.steps.end(),
std::back_inserter(nsteps),
[](auto s) { return std::abs(s); });
return ins = info.add_instruction(
make_op("step", {{"axes", sd.op.axes}, {"steps", nsteps}}), ins);
}
else
return ins;
}
std::vector<int64_t> steps;
slice_desc construct_slice_desc(const onnx_parser& parser,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
{
slice_desc sd;
// slice can have up to 5 inputs, we first check the 5th one
// to decide whether MIGRAPHX can handle this slice.
......@@ -51,89 +100,73 @@ struct parse_slice : op_parser<parse_slice>
{
migraphx::argument step_arg = args.back()->eval();
check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
step_arg.visit([&](auto s) { sd.steps.assign(s.begin(), s.end()); });
}
if(args.size() >= 4)
{
migraphx::argument axes_arg = args.at(3)->eval();
check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
sd.op.axes = sd.insert(args.at(3));
}
else if(contains(info.attributes, "axes"))
{
literal s = parser.parse_value(info.attributes.at("axes"));
s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.axes)); });
}
if(args.size() >= 3)
{
migraphx::argument end_arg = args.at(2)->eval();
check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
sd.op.ends = sd.insert(args.at(2));
}
else if(contains(info.attributes, "ends"))
{
literal s = parser.parse_value(info.attributes.at("ends"));
s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.ends)); });
}
if(args.size() >= 2)
{
migraphx::argument start_arg = args.at(1)->eval();
check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
sd.op.starts = sd.insert(args.at(1));
}
else if(contains(info.attributes, "starts"))
{
literal s = parser.parse_value(info.attributes.at("starts"));
s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.starts)); });
}
// data input argument
sd.always_insert(args.at(0));
// If axes arg is not given, the default is all of them.
if(op.axes.empty())
if(sd.op.axes.empty() and sd.op_args.size() < 3)
{
std::vector<int64_t> axes(args[0]->get_shape().ndim());
std::iota(axes.begin(), axes.end(), int64_t{0});
op.axes = axes;
sd.op.axes = axes;
}
std::vector<int64_t> raxes;
if(not sd.steps.empty())
{
if(sd.op.starts.empty() or sd.op.ends.empty())
MIGRAPHX_THROW("PARSE_SLICE: steps and variable starts and ends is not supported");
if(sd.op.axes.empty())
MIGRAPHX_THROW("PARSE_SLICE: steps and variable axes is not supported");
}
assert(steps.empty() or steps.size() == op.axes.size());
assert(op.axes.size() == op.starts.size());
assert(op.axes.size() == op.ends.size());
assert(sd.steps.empty() or sd.steps.size() == sd.op.axes.size());
// If any axes have negative step, prepare to add a "reverse" op
for(auto i : range(steps.size()))
for(auto i : range(sd.steps.size()))
{
if(steps[i] >= 0)
if(sd.steps[i] >= 0)
continue;
op.starts[i] += 1;
if(op.starts[i] == 0)
op.starts[i] = INT_MAX;
op.ends[i] += 1;
raxes.push_back(op.axes[i]);
std::swap(op.starts[i], op.ends[i]);
}
auto ins = info.add_instruction(op, args[0]);
if(not raxes.empty())
{
ins = info.add_instruction(make_op("reverse", {{"axes", raxes}}), ins);
sd.op.starts[i] += 1;
if(sd.op.starts[i] == 0)
sd.op.starts[i] = INT_MAX;
sd.op.ends[i] += 1;
sd.raxes.push_back(sd.op.axes[i]);
std::swap(sd.op.starts[i], sd.op.ends[i]);
}
// If any steps are other than default 1, add a "steps" op
if(std::any_of(steps.begin(), steps.end(), [](auto s) { return std::abs(s) != 1; }))
{
std::vector<int64_t> nsteps;
std::transform(steps.begin(), steps.end(), std::back_inserter(nsteps), [](auto s) {
return std::abs(s);
});
return ins = info.add_instruction(
make_op("step", {{"axes", op.axes}, {"steps", nsteps}}), ins);
}
else
return ins;
return sd;
}
};
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -36,8 +36,12 @@ void optimize_module::apply(module_pass_manager& mpm) const
{
for(int i = 0; i < 2; i++)
{
mpm.run_pass(simplify_reshapes{});
mpm.run_pass(simplify_algebra{});
// loop to further optimize after initial transformations
for(int j = 0; j < 2; j++)
{
mpm.run_pass(simplify_reshapes{});
mpm.run_pass(simplify_algebra{});
}
mpm.run_pass(eliminate_common_subexpression{});
mpm.run_pass(dead_code_elimination{});
mpm.run_pass(propagate_constant{});
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -52,6 +52,11 @@ void calculate_padding(int64_t idx,
}
}
/**
* Given the input array dimensions; kernel (wei_lens); strides; and dilations,
* calculate the padding value in each dimension.
*
*/
std::vector<std::size_t> calc_dyn_auto_pad(const std::vector<std::size_t>& input_lens,
const std::vector<std::size_t>& wei_lens,
const std::vector<std::size_t>& strides,
......@@ -60,6 +65,7 @@ std::vector<std::size_t> calc_dyn_auto_pad(const std::vector<std::size_t>& input
{
std::vector<std::size_t> padding;
assert(input_lens.size() >= 3);
assert(input_lens.size() == wei_lens.size());
std::size_t num_spatial_dims = input_lens.size() - 2;
padding.resize(2 * num_spatial_dims);
for(std::size_t i = 0; i < num_spatial_dims; i++)
......@@ -88,6 +94,11 @@ std::vector<std::size_t> calc_dyn_auto_pad(const std::vector<std::size_t>& input
return padding;
}
/**
* Calculate the correct output shape for a convolution with
* a given input size and other parameters.
*
*/
shape compute_padded_shape(const shape& input,
const shape& weights,
const std::vector<std::size_t>& padding,
......@@ -111,5 +122,33 @@ shape compute_padded_shape(const shape& input,
return input.with_lens(output_lens);
}
/**
* Calculate the correct output shape for a pooling with
* a given input size and other parameters. This uses
* the same formula for pooling that compute_padded_shape() uses
* for convolutions, but takes slightly different inputs.
*
*/
shape compute_padded_pool_shape(const shape& input,
const shape& kernel,
const std::vector<std::size_t>& padding,
const std::vector<std::size_t>& stride,
const std::vector<std::size_t>& dilation)
{
const size_t num_spatial_dims = input.lens().size() - 2;
std::vector<size_t> output_lens{input.lens()[0], input.lens()[1]};
// calculate the output shape of the pooling: ((W - K + 2P) / S) + 1
for(size_t i = 0; i < num_spatial_dims; ++i)
{
auto padding_factor = padding[i] + padding[i + num_spatial_dims];
output_lens.push_back(std::size_t(std::max<std::ptrdiff_t>(
1,
(input.lens()[i + 2] - (1 + dilation[i] * (kernel.lens()[i] - 1)) + padding_factor) /
stride[i] +
1)));
}
return input.with_lens(output_lens);
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment