Commit 31065c7d authored by charlie's avatar charlie
Browse files

Merge branch 'dyn_squeeze' of github.com:ROCmSoftwarePlatform/AMDMIGraphX into dyn_model_test

parents 6bec381f 6acbd4e4
......@@ -208,7 +208,7 @@ struct schedule_model
template <typename PrivateDetailTypeErasedU = PrivateDetailTypeErasedT>
private_detail_te_handle_type(
PrivateDetailTypeErasedT value,
typename std::enable_if<!std::is_reference<PrivateDetailTypeErasedU>::value,
typename std::enable_if<not std::is_reference<PrivateDetailTypeErasedU>::value,
int>::type* = nullptr) noexcept
: private_detail_te_value(std::move(value))
{
......@@ -274,7 +274,7 @@ struct schedule_model
private_detail_te_handle_base_type& private_detail_te_get_handle()
{
assert(private_detail_te_handle_mem_var != nullptr);
if(!private_detail_te_handle_mem_var.unique())
if(not private_detail_te_handle_mem_var.unique())
private_detail_te_handle_mem_var = private_detail_te_handle_mem_var->clone();
return *private_detail_te_handle_mem_var;
}
......
......@@ -30,6 +30,7 @@
#include <numeric>
#include <memory>
#include <migraphx/functional.hpp>
#include <migraphx/errors.hpp>
#include <migraphx/half.hpp>
#include <migraphx/config.hpp>
......@@ -89,7 +90,10 @@ struct shape
std::size_t opt = 0;
template <class Self, class F>
static auto reflect(Self& self, F f);
static auto reflect(Self& self, F f)
{
return pack(f(self.min, "min"), f(self.max, "max"), f(self.opt, "opt"));
}
bool is_fixed() const;
bool has_optimal() const;
......@@ -115,6 +119,12 @@ struct shape
shape(type_t t, std::vector<dynamic_dimension> dims);
// Construct a dynamic shape from three sets of lengths (of the same rank)
shape(type_t t,
std::vector<std::size_t> mins,
std::vector<std::size_t> maxes,
std::vector<std::size_t> opts);
template <class Range>
shape(type_t t, const Range& l) : shape(t, std::vector<std::size_t>(l.begin(), l.end()))
{
......@@ -136,6 +146,12 @@ struct shape
const std::vector<std::size_t>& lens() const;
const std::vector<std::size_t>& strides() const;
/*!
* The number of dimensions in the shape.
* Same as the number of indices required to get a data value.
*/
std::size_t ndim() const;
/*!
* Return the number of elements in the tensor.
*/
......@@ -221,6 +237,9 @@ struct shape
shape with_type(type_t t) const;
// convert the shape to an equivalent dynamic shape
shape to_dynamic() const;
friend bool operator==(const shape& x, const shape& y);
friend bool operator!=(const shape& x, const shape& y);
friend std::ostream& operator<<(std::ostream& os, const shape& x);
......
......@@ -216,7 +216,7 @@ struct stream_model
template <typename PrivateDetailTypeErasedU = PrivateDetailTypeErasedT>
private_detail_te_handle_type(
PrivateDetailTypeErasedT value,
typename std::enable_if<!std::is_reference<PrivateDetailTypeErasedU>::value,
typename std::enable_if<not std::is_reference<PrivateDetailTypeErasedU>::value,
int>::type* = nullptr) noexcept
: private_detail_te_value(std::move(value))
{
......@@ -288,7 +288,7 @@ struct stream_model
private_detail_te_handle_base_type& private_detail_te_get_handle()
{
assert(private_detail_te_handle_mem_var != nullptr);
if(!private_detail_te_handle_mem_var.unique())
if(not private_detail_te_handle_mem_var.unique())
private_detail_te_handle_mem_var = private_detail_te_handle_mem_var->clone();
return *private_detail_te_handle_mem_var;
}
......
......@@ -26,8 +26,11 @@
#include <ostream>
#include <algorithm>
#include <migraphx/reflect.hpp>
#include <migraphx/rank.hpp>
#include <migraphx/requires.hpp>
#include <migraphx/config.hpp>
#include <vector>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -41,7 +44,7 @@ struct stream_range_container
friend std::ostream& operator<<(std::ostream& os, const stream_range_container& sr)
{
assert(sr.r != nullptr);
if(!sr.r->empty())
if(not sr.r->empty())
{
os << sr.r->front();
std::for_each(
......@@ -59,10 +62,22 @@ inline stream_range_container<Range> stream_range(const Range& r)
namespace detail {
inline void stream_write_value_impl(rank<2>, std::ostream& os, const std::string& x) { os << x; }
template <class T>
auto stream_write_value_impl(rank<1>, std::ostream& os, const T& x) -> decltype(os << x, void())
{
os << x;
}
template <class T>
void stream_write_value_impl(rank<1>, std::ostream& os, const std::vector<T>& r)
{
os << "{";
os << stream_range(r);
os << "}";
}
template <class Range>
auto stream_write_value_impl(rank<1>, std::ostream& os, const Range& r)
auto stream_write_value_impl(rank<0>, std::ostream& os, const Range& r)
-> decltype(r.begin(), r.end(), void())
{
os << "{";
......@@ -70,17 +85,26 @@ auto stream_write_value_impl(rank<1>, std::ostream& os, const Range& r)
os << "}";
}
template <class T>
template <class T, MIGRAPHX_REQUIRES(is_reflectable<T>{})>
void stream_write_value_impl(rank<0>, std::ostream& os, const T& x)
{
os << x;
char delim = '{';
reflect_each(x, [&](auto&& y, auto name) {
os << delim;
os << name << "=";
stream_write_value_impl(rank<2>{}, os, y);
delim = ',';
});
if(delim == ',')
os << "}";
}
} // namespace detail
template <class T>
void stream_write_value(std::ostream& os, const T& x)
{
detail::stream_write_value_impl(rank<2>{}, os, x);
detail::stream_write_value_impl(rank<1>{}, os, x);
}
} // namespace MIGRAPHX_INLINE_NS
......
......@@ -21,22 +21,24 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_GREATER_HPP
#define MIGRAPHX_GUARD_RTGLIB_GREATER_HPP
#ifndef MIGRAPHX_GUARD_MIGRAPHX_SUPPORTED_SEGMENTS_HPP
#define MIGRAPHX_GUARD_MIGRAPHX_SUPPORTED_SEGMENTS_HPP
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/greater.hpp>
#include <unordered_set>
#include <migraphx/instruction_ref.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct hip_greater : binary_device<hip_greater, device::greater>
struct supported_segment
{
std::unordered_set<instruction_ref> instructions;
float metric;
};
} // namespace gpu
using supported_segments = std::vector<supported_segment>;
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#endif // MIGRAPHX_GUARD_MIGRAPHX_SUPPORTED_SEGMENTS_HPP
......@@ -37,8 +37,10 @@
#include <migraphx/compile_options.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/rank.hpp>
#include <migraphx/module_ref.hpp>
#include <migraphx/support_metric.hpp>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/supported_segments.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -64,12 +66,12 @@ struct target
*/
context get_context() const;
/**
* @brief Check how well an instruction is supported on a target with the given metric
* @param ins Instruction to check if it's supported
* @param metric Used to define how the return value should be interpreted
* @return The value based on the chosen metric. Negative numbers mean unsupported
* @brief Get the ranges of instructions that are supported on a target
* @param module Module to check for supported instructions
* @param metric Used to define how the quality of the support should be measured
* @return the supported segments of the graph
*/
float is_supported(T&, instruction_ref ins, support_metric m) const;
supported_segments target_is_supported(T&, const_module_ref mod, support_metric metric) const;
/**
* @brief copy an argument to the current target.
*
......@@ -115,9 +117,9 @@ argument copy_from_target(T&, const argument& arg)
}
template <class T>
float target_is_supported(T&, instruction_ref, support_metric)
supported_segments target_find_supported(T&, const_module_ref, support_metric)
{
return 0;
return {};
}
#ifdef TYPE_ERASED_DECLARATION
......@@ -132,7 +134,7 @@ struct target
//
context get_context() const;
// (optional)
float is_supported(instruction_ref ins, support_metric m) const;
supported_segments find_supported(const_module_ref mod, support_metric m) const;
// (optional)
argument copy_to(const argument& input) const;
// (optional)
......@@ -224,10 +226,10 @@ struct target
return (*this).private_detail_te_get_handle().get_context();
}
float is_supported(instruction_ref ins, support_metric m) const
supported_segments find_supported(const_module_ref mod, support_metric m) const
{
assert((*this).private_detail_te_handle_mem_var);
return (*this).private_detail_te_get_handle().is_supported(ins, m);
return (*this).private_detail_te_get_handle().find_supported(mod, m);
}
argument copy_to(const argument& input) const
......@@ -261,33 +263,33 @@ struct target
virtual std::shared_ptr<private_detail_te_handle_base_type> clone() const = 0;
virtual const std::type_info& type() const = 0;
virtual std::string name() const = 0;
virtual std::string name() const = 0;
virtual std::vector<pass> get_passes(context& ctx,
const compile_options& options) const = 0;
virtual context get_context() const = 0;
virtual float is_supported(instruction_ref ins, support_metric m) const = 0;
virtual argument copy_to(const argument& input) const = 0;
virtual argument copy_from(const argument& input) const = 0;
virtual argument allocate(const shape& s) const = 0;
const compile_options& options) const = 0;
virtual context get_context() const = 0;
virtual supported_segments find_supported(const_module_ref mod, support_metric m) const = 0;
virtual argument copy_to(const argument& input) const = 0;
virtual argument copy_from(const argument& input) const = 0;
virtual argument allocate(const shape& s) const = 0;
};
template <class T>
static auto private_detail_te_default_is_supported(char,
T&& private_detail_te_self,
instruction_ref ins,
support_metric m)
-> decltype(private_detail_te_self.is_supported(ins, m))
static auto private_detail_te_default_find_supported(char,
T&& private_detail_te_self,
const_module_ref mod,
support_metric m)
-> decltype(private_detail_te_self.find_supported(mod, m))
{
return private_detail_te_self.is_supported(ins, m);
return private_detail_te_self.find_supported(mod, m);
}
template <class T>
static float private_detail_te_default_is_supported(float,
T&& private_detail_te_self,
instruction_ref ins,
support_metric m)
static supported_segments private_detail_te_default_find_supported(float,
T&& private_detail_te_self,
const_module_ref mod,
support_metric m)
{
return target_is_supported(private_detail_te_self, ins, m);
return target_find_supported(private_detail_te_self, mod, m);
}
template <class T>
......@@ -349,7 +351,7 @@ struct target
template <typename PrivateDetailTypeErasedU = PrivateDetailTypeErasedT>
private_detail_te_handle_type(
PrivateDetailTypeErasedT value,
typename std::enable_if<!std::is_reference<PrivateDetailTypeErasedU>::value,
typename std::enable_if<not std::is_reference<PrivateDetailTypeErasedU>::value,
int>::type* = nullptr) noexcept
: private_detail_te_value(std::move(value))
{
......@@ -372,10 +374,11 @@ struct target
context get_context() const override { return private_detail_te_value.get_context(); }
float is_supported(instruction_ref ins, support_metric m) const override
supported_segments find_supported(const_module_ref mod, support_metric m) const override
{
return private_detail_te_default_is_supported(char(0), private_detail_te_value, ins, m);
return private_detail_te_default_find_supported(
char(0), private_detail_te_value, mod, m);
}
argument copy_to(const argument& input) const override
......@@ -423,7 +426,7 @@ struct target
private_detail_te_handle_base_type& private_detail_te_get_handle()
{
assert(private_detail_te_handle_mem_var != nullptr);
if(!private_detail_te_handle_mem_var.unique())
if(not private_detail_te_handle_mem_var.unique())
private_detail_te_handle_mem_var = private_detail_te_handle_mem_var->clone();
return *private_detail_te_handle_mem_var;
}
......
......@@ -25,6 +25,7 @@
#define MIGRAPHX_GUARD_MIGRAPHX_ASSIGNMENT_HPP
#include <unordered_map>
#include <string>
#include <migraphx/instruction_ref.hpp>
......@@ -33,10 +34,20 @@ inline namespace MIGRAPHX_INLINE_NS {
struct target_assignments
{
void add_assignment(instruction_ref ins, const std::string& target);
using iterator = std::unordered_map<instruction_ref, std::string>::const_iterator;
using value_type = std::pair<instruction_ref, std::string>;
auto begin() const { return assignments.cbegin(); }
auto end() const { return assignments.cend(); }
auto size() const { return assignments.size(); }
auto& at(instruction_ref ins) const { return assignments.at(ins); }
auto insert(iterator it, const std::pair<instruction_ref, std::string>& assignment)
{
return assignments.insert(it, assignment);
}
auto find(instruction_ref ins) const { return assignments.find(ins); }
auto begin() const { return assignments.begin(); }
auto end() const { return assignments.end(); }
private:
std::unordered_map<instruction_ref, std::string> assignments;
......
......@@ -67,7 +67,7 @@ struct tensor_view
const shape& get_shape() const { return this->m_shape; }
bool empty() const { return m_data == nullptr || m_shape.lens().empty(); }
bool empty() const { return m_data == nullptr or m_shape.lens().empty(); }
std::size_t size() const { return m_shape.elements(); }
......@@ -109,37 +109,37 @@ struct tensor_view
T& operator[](std::size_t i)
{
assert(!this->empty() && i < this->size());
assert(not this->empty() && i < this->size());
return m_data[m_shape.index(i)];
}
const T& operator[](std::size_t i) const
{
assert(!this->empty() && i < this->size());
assert(not this->empty() && i < this->size());
return m_data[m_shape.index(i)];
}
T& front()
{
assert(!this->empty());
assert(not this->empty());
return m_data[0];
}
const T& front() const
{
assert(!this->empty());
assert(not this->empty());
return m_data[0];
}
T& back()
{
assert(!this->empty());
assert(not this->empty());
return m_data[m_shape.index(this->size() - 1)];
}
const T& back() const
{
assert(!this->empty());
assert(not this->empty());
return m_data[m_shape.index(this->size() - 1)];
}
......@@ -159,7 +159,7 @@ struct tensor_view
friend std::ostream& operator<<(std::ostream& os, const tensor_view<T>& x)
{
if(!x.empty())
if(not x.empty())
{
os << as_number(x.front());
for(std::size_t i = 1; i < x.m_shape.elements(); i++)
......@@ -182,7 +182,7 @@ bool operator==(const tensor_view<T>& x, const tensor_view<U>& y)
{
for(std::size_t i = 0; i < x.get_shape().elements(); i++)
{
if(!float_equal(x[i], y[i]))
if(not float_equal(x[i], y[i]))
return false;
}
return true;
......@@ -193,7 +193,7 @@ bool operator==(const tensor_view<T>& x, const tensor_view<U>& y)
template <class T, class U>
bool operator!=(const tensor_view<T>& x, const tensor_view<U>& y)
{
return !(x == y);
return not(x == y);
}
template <class T>
......
......@@ -34,7 +34,7 @@ inline namespace MIGRAPHX_INLINE_NS {
inline int tune_axis(const int n_dim, const int axis, const std::string& op_name = "OPERATOR")
{
if(axis >= n_dim || std::abs(axis) > n_dim)
if(axis >= n_dim or std::abs(axis) > n_dim)
{
MIGRAPHX_THROW(to_upper(op_name) + ": axis is out of range.");
}
......
......@@ -184,6 +184,12 @@ struct value
{
}
explicit binary(std::size_t s) : base(s) {}
friend std::ostream& operator<<(std::ostream& os, const binary& obj)
{
os << "{binary_object: " << obj.size() << "}";
return os;
}
};
value() = default;
......
......@@ -176,13 +176,13 @@ bool operator==(const instruction& x, const instruction& y)
return true;
}
bool operator!=(const instruction& x, const instruction& y) { return !(x == y); }
bool operator!=(const instruction& x, const instruction& y) { return not(x == y); }
bool operator==(instruction_ref ref, const instruction& i) { return i == ref; }
bool operator!=(const instruction& i, instruction_ref ref) { return !(i == ref); }
bool operator!=(const instruction& i, instruction_ref ref) { return not(i == ref); }
bool operator!=(instruction_ref ref, const instruction& i) { return !(i == ref); }
bool operator!=(instruction_ref ref, const instruction& i) { return not(i == ref); }
void instruction::add_output(instruction_ref ins)
{
......@@ -361,7 +361,7 @@ void instruction::print(std::ostream& os,
os << "{" << ins->get_literal() << "}";
}
if(!ins->inputs().empty())
if(not ins->inputs().empty())
{
char delim = '(';
for(auto&& arg : ins->inputs())
......@@ -374,7 +374,7 @@ void instruction::print(std::ostream& os,
}
// print module inputs
if(!ins->module_inputs().empty())
if(not ins->module_inputs().empty())
{
std::string delim = ", [";
for(auto&& mod_arg : ins->module_inputs())
......@@ -446,7 +446,7 @@ operation instruction::normalized_operator() const
if(this->need_normalization())
{
auto s = this->inputs().front()->get_shape();
if(!normalize_attributes(o, s.max_lens()))
if(not normalize_attributes(o, s.max_lens()))
return this->get_operator();
}
return o;
......
......@@ -25,7 +25,6 @@
#include <migraphx/file_buffer.hpp>
#include <migraphx/json.hpp>
#include <migraphx/msgpack.hpp>
#include <migraphx/file_buffer.hpp>
#include <fstream>
namespace migraphx {
......
......@@ -64,5 +64,10 @@ operation make_op_from_value(const std::string& name, const value& v)
});
}
operation make_json_op(const std::string& name, const std::string& s)
{
return make_op(name, from_json_string(convert_to_json(s)));
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -34,7 +34,6 @@
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_target.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/json.hpp>
#include <iostream>
#include <sstream>
......@@ -141,12 +140,12 @@ void module::set_bypass(bool b) { impl->bypass = b; }
void module::assign(const module& m)
{
// copy the impl
if(!impl)
if(not impl)
impl = std::make_unique<module_impl>();
*impl = *m.impl;
// clear instructions
if(!impl->instructions.empty())
if(not impl->instructions.empty())
{
impl->clear();
}
......@@ -346,7 +345,7 @@ instruction_ref module::replace_instruction(instruction_ref ins, instruction_ref
assert(out->valid(begin()));
}
// Replacement should not be dead code unless its the last instruction
assert(!rep->outputs().empty() or rep == std::prev(end()));
assert(not rep->outputs().empty() or rep == std::prev(end()));
// Output of the original instruction should only be the replacement or empty
assert(ins->outputs().empty() or std::all_of(ins->outputs().begin(),
ins->outputs().end(),
......@@ -385,9 +384,13 @@ instruction_ref module::move_instruction(instruction_ref src, instruction_ref ds
instruction_ref module::move_instructions(instruction_ref src, instruction_ref dst)
{
this->move_instruction(src, dst);
for(auto ins : src->inputs())
this->move_instruction(ins, src);
{
if(not contains(this->impl->instructions, ins))
continue;
this->move_instructions(ins, dst);
}
this->move_instruction(src, dst);
return src;
}
......@@ -598,7 +601,7 @@ instruction_ref module::validate() const
auto inputs = i.inputs();
bool check_order = std::all_of(
inputs.begin(), inputs.end(), [&](auto in) { return has_instruction(in); });
return !i.valid(impl->instructions.begin(), check_order);
return not i.valid(impl->instructions.begin(), check_order);
});
}
......@@ -754,7 +757,7 @@ void module::print_graph(std::ostream& os, bool brief) const
label = to_string(ins->get_operator());
os << "\t" << enclose_name(ins_names.at(ins)) << "[label=" << enclose_name(label) << "]";
os << ";" << std::endl;
if(!ins->inputs().empty())
if(not ins->inputs().empty())
{
for(auto&& arg : ins->inputs())
{
......@@ -788,12 +791,15 @@ static std::string cpp_var_name(const std::string& name)
static void print_make_op(std::ostream& os, const operation& op)
{
os << "migraphx::make_op(" << enclose_name(op.name());
auto v = op.to_value();
if(not v.empty())
{
os << ", "
<< "migraphx::from_json_string(" << enclose_name(to_json_string(v)) << ")";
os << "migraphx::make_json_op(" << enclose_name(op.name());
os << ", " << enclose_name(to_json_string(v));
}
else
{
os << "migraphx::make_op(" << enclose_name(op.name());
}
os << ")";
}
......@@ -905,7 +911,7 @@ module& module::sort()
this->move_instruction(ins, this->begin());
for(auto child : ins->inputs())
{
if(!contains(this->impl->instructions, child))
if(not contains(this->impl->instructions, child))
{
continue;
}
......
......@@ -79,14 +79,14 @@ auto tune_attribute(const std::vector<int64_t>& vec,
{
if(contains(vec_attrs, op::normalize_attribute::include_max))
{
if(!std::equal(result.begin(), result.end(), max_vals.begin(), std::less_equal<>{}))
if(not std::equal(result.begin(), result.end(), max_vals.begin(), std::less_equal<>{}))
{
MIGRAPHX_THROW("TUNE_VECTOR: value out of range!");
}
}
else
{
if(!std::equal(result.begin(), result.end(), max_vals.begin(), std::less<>{}))
if(not std::equal(result.begin(), result.end(), max_vals.begin(), std::less<>{}))
{
MIGRAPHX_THROW("TUNE_VECTOR: value out of range!");
}
......@@ -118,14 +118,15 @@ auto tune_attribute(const std::vector<int64_t>& vec,
{
if(contains(vec_attrs, op::normalize_attribute::include_min))
{
if(!std::equal(min_vals.begin(), min_vals.end(), result.begin(), std::less_equal<>{}))
if(not std::equal(
min_vals.begin(), min_vals.end(), result.begin(), std::less_equal<>{}))
{
MIGRAPHX_THROW("TUNE_VECTOR: attribute out of range!");
}
}
else
{
if(!std::equal(result.begin(), result.end(), min_vals.begin(), std::less<>{}))
if(not std::equal(result.begin(), result.end(), min_vals.begin(), std::less<>{}))
{
MIGRAPHX_THROW("TUNE_VECTOR: attribute out of range!");
}
......@@ -174,7 +175,7 @@ bool normalize_attributes(operation& op, const std::vector<std::size_t>& lens)
tuned = true;
}
}
if(!attrs.contains("normalize_axes"))
if(not attrs.contains("normalize_axes"))
{
return tuned;
}
......
......@@ -30,7 +30,7 @@ namespace onnx {
void recalc_conv_attributes(value& v, size_t kdims)
{
if(not(v["padding"].size() == kdims or v["padding"].size() == kdims * 2))
if(v["padding"].size() != kdims and v["padding"].size() != kdims * 2)
{
v["padding"].resize(kdims);
std::fill_n(v["padding"].begin(), kdims, 0);
......
......@@ -97,6 +97,7 @@ struct onnx_parser
shape::dynamic_dimension default_dyn_dim_value = {1, 1, 0};
std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims;
std::unordered_map<std::string, std::vector<shape::dynamic_dimension>> map_dyn_input_dims;
bool use_dyn_output = false;
bool skip_unknown_operators = false;
int64_t max_loop_iterations = 10;
int64_t opset_version = 13;
......
......@@ -60,8 +60,14 @@ program parse_onnx_from(const onnx_options& options, Ts&&... xs)
{
parser.default_dyn_dim_value = options.default_dyn_dim_value;
}
if(not options.map_input_dims.empty() and not options.map_dyn_input_dims.empty())
{
MIGRAPHX_THROW("PARSE_ONNX_FROM: both map_input_dims and map_dyn_input_dims non-empty, only"
"one should be used");
}
parser.skip_unknown_operators = options.skip_unknown_operators;
parser.max_loop_iterations = options.max_loop_iterations;
parser.use_dyn_output = options.use_dyn_output;
if(options.print_program_on_error)
{
......@@ -80,6 +86,7 @@ program parse_onnx_from(const onnx_options& options, Ts&&... xs)
{
parser.parse_from(std::forward<Ts>(xs)...);
}
return std::move(parser.prog);
}
......
......@@ -187,7 +187,7 @@ operation onnx_parser::load(const std::string& name, const node_info& info) cons
void onnx_parser::parse_undefined(module* mod, const std::string& name)
{
if(!contains(instructions, name))
if(not contains(instructions, name))
{
auto ins = mod->add_instruction(make_op("undefined"));
instructions[name] = ins;
......@@ -256,11 +256,6 @@ int64_t onnx_parser::get_opset_version(const onnx::ModelProto& model)
void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
{
if(not map_input_dims.empty() and not map_dyn_input_dims.empty())
{
MIGRAPHX_THROW("PARSE_GRAPH: both map_input_dims and map_dyn_input_dims non-empty, only"
"one should be used");
}
std::unordered_map<std::string, instruction_ref> mod_insts;
for(auto&& f : graph.initializer())
{
......@@ -272,7 +267,7 @@ void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
{
const std::string& name = input.name();
// input not in initializer_data, so it is a real input
if(!contains(mod_insts, name))
if(not contains(mod_insts, name))
{
// ONNX specification does not specify how to deal with the
// scenario that a nested subgraph contains a parameter with the
......@@ -359,7 +354,7 @@ void onnx_parser::parse_graph(module* mod, const onnx::GraphProto& graph)
all_output_names.begin(),
all_output_names.end(),
std::back_inserter(prog_output_names),
[&](const auto& name) { return !(name.empty() or instructions.count(name) == 0); });
[&](const auto& name) { return not(name.empty() or instructions.count(name) == 0); });
std::vector<instruction_ref> output_ins;
std::transform(prog_output_names.begin(),
......@@ -449,7 +444,7 @@ shape onnx_parser::parse_type(const onnx::TypeProto& t,
const std::vector<std::size_t>& input_dims) const
{
shape::type_t shape_type = get_type(t.tensor_type().elem_type());
if(!input_dims.empty())
if(not input_dims.empty())
{
return {shape_type, input_dims};
}
......@@ -516,7 +511,7 @@ shape::type_t get_type(int dtype)
bool is_type_float(shape::type_t dtype)
{
bool r = false;
if(dtype == shape::float_type || dtype == shape::double_type || dtype == shape::half_type)
if(dtype == shape::float_type or dtype == shape::double_type or dtype == shape::half_type)
{
r = true;
}
......
......@@ -42,7 +42,7 @@ void cal_auto_padding_size(onnx_parser::node_info info,
size_t kdims = in_lens.size() - 2;
assert(k_lens.size() == kdims and dilation.size() == kdims);
if(!contains(info.attributes, "auto_pad"))
if(not contains(info.attributes, "auto_pad"))
{
return;
}
......@@ -124,7 +124,7 @@ void tune_padding_size(const value& v,
}
// if padding is symmetric, return directly
if(!is_asym_padding(padding))
if(not is_asym_padding(padding))
{
return;
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment