"vscode:/vscode.git/clone" did not exist on "2781ccd88c7a19f775fae8743de8de712e2ad86f"
Commit 30a0b238 authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

manual merge

parents 72aabeb5 0b6b33bc
......@@ -7,7 +7,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Cancel Previous Runs
uses: styfle/cancel-workflow-action@0.6.0
uses: styfle/cancel-workflow-action@0.11.0
with:
access_token: ${{ github.token }}
tidy:
......@@ -15,9 +15,19 @@ jobs:
steps:
- name: Free space
run: sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android
- uses: actions/checkout@v2
run: |
sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android /usr/local/graalvm /usr/local/aws* /usr/local/lib/heroku
du . --max-depth=1 -h
ls -la
cd /usr/local
du . --max-depth=1 -h
ls -la
cd /usr/local/lib
echo $(pwd)
du . --max-depth=1 -h
ls -la
- uses: actions/checkout@v3
# In this step, this action saves a list of existing images,
# the cache is created without them in the post run.
......@@ -34,7 +44,7 @@ jobs:
message("::set-output name=timestamp::${current_date}")
- name: Cache files for tidy
uses: pat-s/always-upload-cache@v2.1.3
uses: pat-s/always-upload-cache@v3.0.11
with:
path: tidy-cache
key: tidy-cache-${{ steps.cache_timestamp.outputs.timestamp }}
......@@ -65,8 +75,8 @@ jobs:
steps:
- name: Free space
run: sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android
- uses: actions/checkout@v2
run: sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android /usr/local/graalvm /usr/local/aws* /usr/local/lib/heroku
- uses: actions/checkout@v3
# In this step, this action saves a list of existing images,
# the cache is created without them in the post run.
......@@ -110,8 +120,8 @@ jobs:
steps:
- name: Free space
run: sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android
- uses: actions/checkout@v2
run: sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android /usr/local/graalvm /usr/local/aws* /usr/local/lib/heroku
- uses: actions/checkout@v3
# In this step, this action saves a list of existing images,
# the cache is created without them in the post run.
......@@ -146,10 +156,10 @@ jobs:
steps:
- name: Free space
run: sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android
- uses: actions/checkout@v2
run: sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android /usr/local/graalvm /usr/local/aws* /usr/local/lib/heroku
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v2
uses: actions/setup-python@v4
with:
python-version: 3.8
- name: Install pyflakes
......@@ -167,10 +177,10 @@ jobs:
steps:
- name: Free space
run: sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android
- uses: actions/checkout@v2
run: sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android /usr/local/graalvm /usr/local/aws* /usr/local/lib/heroku
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v2
uses: actions/setup-python@v4
with:
python-version: 3.8
- name: run License Check
......@@ -198,16 +208,16 @@ jobs:
steps:
- name: Free space
run: sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android
- uses: actions/checkout@v2
run: sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android /usr/local/graalvm /usr/local/aws* /usr/local/lib/heroku
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v2
uses: actions/setup-python@v4
with:
python-version: 3.7
- name: Cache dependencies
# Ignore the failure of a step and avoid terminating the job.
continue-on-error: true
uses: actions/cache@v2
uses: actions/cache@v3
with:
# This path is specific to Ubuntu
path: ${{ github.workspace }}/cget
......@@ -294,16 +304,16 @@ jobs:
steps:
- name: Free space
run: sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android
- uses: actions/checkout@v2
run: sudo rm -rf /usr/local/android /usr/share/dotnet /usr/local/share/boost /opt/ghc /usr/local/share/chrom* /usr/share/swift /usr/local/julia* /usr/local/lib/android /usr/local/graalvm /usr/local/aws* /usr/local/lib/heroku
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v2
uses: actions/setup-python@v4
with:
python-version: 3.7
- name: Cache dependencies
# Ignore the failure of a step and avoid terminating the job.
continue-on-error: true
uses: actions/cache@v2
uses: actions/cache@v3
with:
# This path is specific to Ubuntu
path: ${{ github.workspace }}/cget
......
......@@ -74,7 +74,8 @@ RUN cget -p $PREFIX install facebook/zstd@v1.4.5 -X subdir -DCMAKE_DIR=build/cma
RUN cget -p $PREFIX install ccache@v4.1 -DENABLE_TESTING=OFF
# Install newer cmake for onnx runtime
RUN cget -p /opt/cmake install kitware/cmake@v3.13.4
ARG CMAKE_VERSION=3.24.2
RUN cget -p /opt/cmake install -X binary https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz
ARG ONNXRUNTIME_REPO=https://github.com/Microsoft/onnxruntime
ARG ONNXRUNTIME_BRANCH=main
......
......@@ -32,6 +32,7 @@
#include <memory>
#include <numeric>
#include <exception>
#include <array>
#include <vector>
#include <cassert>
#include <iostream>
......
......@@ -27,6 +27,7 @@
#include <migraphx/algorithm.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -43,6 +44,7 @@ inline namespace MIGRAPHX_INLINE_NS {
// In this case we need to broadcast the (:,:,1:,:) axis
// of s0 plus the 1st dimension of s1 giving
// output_lens = (3,2,7,5)
//
std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
std::vector<std::size_t> s1)
{
......@@ -50,25 +52,63 @@ std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
return s0;
if(s0.size() > s1.size())
s0.swap(s1);
std::vector<std::size_t> out_lens(s1);
auto offset = s1.size() - s0.size();
std::transform(
s0.begin(), s0.end(), s1.begin() + offset, out_lens.begin() + offset, [&](auto a, auto b) {
if(a != b and a != 1 and b != 1)
{
MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" + to_string_range(s0) + "} and {" +
to_string_range(s1) + "} mismatch!");
MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" + migraphx::to_string_range(s0) +
"} and {" + migraphx::to_string_range(s1) + "} mismatch!");
}
return std::max(a, b);
});
return out_lens;
}
std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, shape s1)
{
// change both shapes to dynamic_dimension representation
s0 = s0.to_dynamic();
s1 = s1.to_dynamic();
if(s0.ndim() > s1.ndim())
{
std::swap(s0, s1);
}
auto offset = s1.ndim() - s0.ndim();
std::vector<shape::dynamic_dimension> out_dims(s1.dyn_dims());
shape::dynamic_dimension one_dyn_dim{1, 1, 0};
std::transform(
s0.dyn_dims().cbegin(),
s0.dyn_dims().cend(),
s1.dyn_dims().cbegin() + offset,
out_dims.begin() + offset,
[&](auto a, auto b) {
if(a == b)
{
return a;
}
else if(a == one_dyn_dim or b == one_dyn_dim)
{
// setting opt to 0, may need to be changed
return shape::dynamic_dimension{std::max(a.min, b.min), std::max(a.max, b.max), 0};
}
else
{
MIGRAPHX_THROW("COMPUTE_BROADCASTED_DYN_DIMS: dynamic shapes {" +
migraphx::to_string_range(s0.dyn_dims()) + "} and {" +
migraphx::to_string_range(s1.dyn_dims()) + "} mismatch!");
}
});
return out_dims;
}
// Compute the common (broadcasted) dimensions of a list of fixed shapes
std::vector<std::size_t> compute_common_lens(const std::vector<shape>& shapes)
{
assert(not shapes.empty());
assert(
std::none_of(shapes.cbegin(), shapes.cend(), [](auto shape) { return shape.dynamic(); }));
return transform_accumulate(shapes.begin() + 1,
shapes.end(),
shapes.front().lens(),
......@@ -114,6 +154,48 @@ instruction_ref insert_common_op(module& m,
const operation& op,
std::vector<instruction_ref> inputs)
{
if(std::any_of(
inputs.cbegin(), inputs.cend(), [](auto input) { return input->get_shape().dynamic(); }))
{
// currently only handles the binary case
if(inputs.size() != 2)
{
MIGRAPHX_THROW("INSERT_COMMON_OP: not handled; " + migraphx::to_string(inputs.size()) +
"inputs, only handle two inputs if any are dynamic shape");
}
auto c_type = compute_common_types(to_shapes(inputs));
auto c_dyn_dims =
compute_broadcasted_dyn_dims(inputs[0]->get_shape(), inputs[1]->get_shape());
// following should work for a static or dynamic shape
if(inputs[0]->get_shape().dyn_dims() != c_dyn_dims)
{
inputs[0] = m.insert_instruction(
ins,
make_op("multibroadcast", {{"out_dyn_dims", to_value(c_dyn_dims)}}),
inputs[0],
inputs[1]);
}
if(inputs[1]->get_shape().dyn_dims() != c_dyn_dims)
{
inputs[1] = m.insert_instruction(
ins,
make_op("multibroadcast", {{"out_dyn_dims", to_value(c_dyn_dims)}}),
inputs[1],
inputs[0]);
}
std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto input) {
if(input->get_shape().type() != c_type)
{
input =
m.insert_instruction(ins, make_op("convert", {{"target_type", c_type}}), input);
}
return input;
});
}
else
{
auto common = common_shape(to_shapes(inputs));
std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto input) {
if(input->get_shape().lens() != common.lens())
......@@ -128,6 +210,7 @@ instruction_ref insert_common_op(module& m,
}
return input;
});
}
return m.insert_instruction(ins, op, inputs);
}
......
......@@ -36,6 +36,9 @@ struct operation;
std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
std::vector<std::size_t> s1);
std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, shape s1);
shape common_shape(const std::vector<shape>& shapes);
instruction_ref insert_common_op(module& m,
......
......@@ -28,6 +28,7 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -60,10 +61,19 @@ struct binary : op_name<Derived>
value attributes() const { return base_attributes(); }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, static_cast<const Derived&>(*this)}.has(2).same_type().same_dims();
check_shapes{inputs, static_cast<const Derived&>(*this), true}
.has(2)
.same_type()
.same_dims();
auto s0 = inputs.at(0);
auto s1 = inputs.at(1);
if(s0 == s1 and s0.packed())
if(s0.dynamic() or s1.dynamic())
{
if(s0 == s1)
return s0;
MIGRAPHX_THROW("BINARY: " + point_function() + ": fixed-dyn shape for inputs");
}
else if(s0 == s1 and s0.packed())
{
return s0;
}
......@@ -81,9 +91,9 @@ struct binary : op_name<Derived>
}
}
argument compute(const shape& output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result{output_shape};
argument result{dyn_out.computed_shape};
visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
std::transform(input1.begin(),
input1.end(),
......
......@@ -27,23 +27,30 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/// The broadcast operator performs the numpy-style broadcasting of an axis of a given tensor. This
/// is achieved primarily by setting the stride of the broadcasted axis to zero. Linear indicies are
/// computed from multi-indicies by computing the inner product on the multi-index with the strides.
/// For example, if we have a tensor A(2,3) it has lengths of (2,3) and strides of (3,1). If we want
/// to compute the linear offset that corresponds to the element on the 2nd row (i = 1) and 3rd
/// column (j = 2), we compute the following inner product (1,2) dot (3, 1) = 1*3 + 2*1 = 5. It is
/// obvious from there that we can negate the effects of a given axis by setting the stride of that
/// axis to zero.
/**
* 1 input version:
* Broadcasts a tensor from the original shape to the broadcast_lens by setting the stride of
* broadcasted dimensions to zero. `axis` attribute for a 1D input shape is the output dimension
* that stays the same. ex: broadcasting shape [1024] -> [4, 1024, 3] has axis = 1 For higher rank
* input shapes, axis is an offset parameter for the broadcasting. Such that this operator would
* work in the opposite direction of NumPy broadcasting. ex: broadcasting shape [2, 2] -> [2, 2, 3]
* with axis = 0
*
* 2 input version:
* Broadcast the first input 1D shape into the second input shape based on the axis parameter.
* Handles broadcasting a 1D static shape into a higher rank dynamic shape.
* broadcast_lens is not used
*/
struct broadcast
{
uint64_t axis = 0;
std::vector<std::size_t> broadcast_lens;
std::vector<std::size_t> broadcast_lens = {};
template <class Self, class F>
static auto reflect(Self& self, F f)
......@@ -54,36 +61,86 @@ struct broadcast
std::string name() const { return "broadcast"; }
shape compute_shape(std::vector<shape> inputs) const
{
auto input = inputs.at(0);
auto t = input.type();
std::vector<size_t> bcast_strides(broadcast_lens.size(), 0);
// the broacast op is deprecated now, so not handling the negative
check_shapes{inputs, *this, true}.has(1, 2);
auto s0 = inputs.at(0);
auto t = s0.type();
if(inputs.size() == 1)
{
// the ONNX broadcast op is deprecated now, so not handling the negative
// value of axis anymore
if(axis >= broadcast_lens.size())
{
MIGRAPHX_THROW("BROADCAST : axis is out of range");
MIGRAPHX_THROW("BROADCAST : axis " + migraphx::to_string(axis) +
" is out of range");
}
if(broadcast_lens.size() - axis < input.lens().size())
if(broadcast_lens.size() - axis < s0.lens().size())
{
MIGRAPHX_THROW("BROADCAST: (broadcast ndims - axis) is less than input ndims");
MIGRAPHX_THROW("BROADCAST: (broadcast ndims - axis) is less than s0 ndims");
}
if(not std::equal(input.lens().begin(), input.lens().end(), broadcast_lens.begin() + axis))
if(not std::equal(s0.lens().begin(), s0.lens().end(), broadcast_lens.begin() + axis))
{
MIGRAPHX_THROW("BROADCAST: when broadcasting, succeeding sizes must match");
}
std::copy(input.strides().begin(), input.strides().end(), bcast_strides.begin() + axis);
std::vector<size_t> bcast_strides(broadcast_lens.size(), 0);
std::copy(s0.strides().begin(), s0.strides().end(), bcast_strides.begin() + axis);
shape output{t, broadcast_lens, std::move(bcast_strides)};
if(output.elements() < input.elements())
MIGRAPHX_THROW("BROADCAST: output size must be greater than or equal to input size");
if(output.elements() < s0.elements())
{
// don't think this can occur?
MIGRAPHX_THROW("BROADCAST: output size must be greater than or equal to s0 size");
}
return output;
}
else
{
// two inputs
auto s1 = inputs.at(1);
if(s0.dynamic())
{
MIGRAPHX_THROW("BROADCAST_2in: s0 is a dynamic shape, does not handle broadcasting "
"a dynamic shape");
}
if(s0.ndim() != 1)
{
MIGRAPHX_THROW("BROADCAST_2in: s0 has ndim " + migraphx::to_string(s0.ndim()) +
", only handle ndim = 1");
}
if(axis >= s1.ndim())
{
MIGRAPHX_THROW("BROADCAST_2in: axis " + migraphx::to_string(axis) +
" is out of range");
}
if(s1.dynamic())
{
s0 = s0.to_dynamic();
if(s0.dyn_dims()[0] != s1.dyn_dims()[axis])
{
MIGRAPHX_THROW("BROADCAST_2in: s0 length doesn't match with dynamic s1 axis "
"dimension length (" +
migraphx::to_string(s0.dyn_dims()[0]) +
" != " + migraphx::to_string(s1.dyn_dims()[axis]) + ")");
}
return s1;
}
if(s0.lens()[0] != s1.lens()[axis])
{
MIGRAPHX_THROW("BROADCAST_2in: s0 length doesn't match with static s1 axis "
"dimension length (" +
migraphx::to_string(s0.lens()[0]) +
" != " + migraphx::to_string(s1.lens()[axis]) + ")");
}
std::vector<size_t> bcast_strides(s1.ndim(), 0);
std::copy(s0.strides().begin(), s0.strides().end(), bcast_strides.begin() + axis);
shape output{t, s1.lens(), std::move(bcast_strides)};
return output;
}
argument compute(shape output_shape, std::vector<argument> args) const
}
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
return args[0].reshape(output_shape);
return args[0].reshape(dyn_out.computed_shape);
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
};
......
......@@ -26,64 +26,105 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/common.hpp>
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/**
* Broadcast multiple dimensions between two tensors.
* Two versions of this operator: one input and two inputs.
* One input version uses output_lens attribute and broadcasts to it.
* Two inputs version broadcasts both inputs to the common shape at evaluation time.
*/
struct multibroadcast
{
std::vector<std::size_t> output_lens;
std::vector<std::size_t> output_lens = {};
// optional attribute
std::vector<shape::dynamic_dimension> output_dyn_dims = {};
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.output_lens, "out_lens"));
return pack(f(self.output_lens, "out_lens"), f(self.output_dyn_dims, "out_dyn_dims"));
}
std::string name() const { return "multibroadcast"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
check_shapes{inputs, *this, true}.has(1, 2);
auto t = inputs.at(0).type();
auto input = inputs.at(0);
auto s0 = inputs.at(0);
if(input.lens().empty())
if(s0.max_lens().empty())
{
MIGRAPHX_THROW("MULTIBROADCAST: inputs dimensions should be > 0");
MIGRAPHX_THROW("MULTIBROADCAST: input dimensions should be > 0");
}
if(input.lens().size() > output_lens.size())
auto make_bcast_strides = [&](std::vector<std::size_t> bcast_lens, std::size_t offset) {
std::vector<size_t> bcast_strides(bcast_lens.size(), 0);
for(std::ptrdiff_t i = s0.lens().size() - 1; i >= 0; i--)
{
if(bcast_lens[i + offset] == s0.lens()[i])
{
MIGRAPHX_THROW("MULTIBROADCAST: inputs dimensions should <= output size");
bcast_strides[i + offset] = s0.strides()[i];
}
}
return bcast_strides;
};
auto offset = output_lens.size() - input.lens().size();
for(std::ptrdiff_t i = input.lens().size() - 1; i >= 0; i--)
if(inputs.size() == 1)
{
if(s0.lens().size() > output_lens.size())
{
if(output_lens[i + offset] != input.lens()[i] and input.lens()[i] != 1)
MIGRAPHX_THROW("MULTIBROADCAST: input dimensions should <= output size");
}
auto offset = output_lens.size() - s0.lens().size();
for(std::ptrdiff_t i = s0.lens().size() - 1; i >= 0; i--)
{
MIGRAPHX_THROW("MULTIBROADCAST: input shape {" + to_string_range(input.lens()) +
if(output_lens[i + offset] != s0.lens()[i] and s0.lens()[i] != 1)
{
MIGRAPHX_THROW("MULTIBROADCAST: input shape {" + to_string_range(s0.lens()) +
"} cannot be broadcasted to {" + to_string_range(output_lens) +
"}!");
}
}
std::vector<size_t> bcast_strides(output_lens.size(), 0);
for(std::ptrdiff_t i = input.lens().size() - 1; i >= 0; i--)
auto bcast_strides = make_bcast_strides(output_lens, offset);
return {t, output_lens, std::move(bcast_strides)};
}
else
{
if(output_lens[i + offset] == input.lens()[i])
// two inputs
auto s1 = inputs.at(1);
if(s0.dynamic() or s1.dynamic())
{
bcast_strides[i + offset] = input.strides()[i];
if(not output_dyn_dims.empty())
{
return {t, output_dyn_dims};
}
return {t, compute_broadcasted_dyn_dims(s0, s1)};
}
return {t, output_lens, bcast_strides};
else
{
auto bcast_lens = compute_broadcasted_lens(s0.lens(), s1.lens());
auto offset = bcast_lens.size() - s0.lens().size();
auto bcast_strides = make_bcast_strides(bcast_lens, offset);
return {t, std::move(bcast_lens), std::move(bcast_strides)};
}
argument compute(shape output_shape, std::vector<argument> args) const
}
}
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
return args[0].reshape(output_shape);
return args[0].reshape(dyn_out.computed_shape);
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
};
......
......@@ -30,6 +30,7 @@
#include <numeric>
#include <memory>
#include <migraphx/functional.hpp>
#include <migraphx/errors.hpp>
#include <migraphx/half.hpp>
#include <migraphx/config.hpp>
......@@ -89,7 +90,10 @@ struct shape
std::size_t opt = 0;
template <class Self, class F>
static auto reflect(Self& self, F f);
static auto reflect(Self& self, F f)
{
return pack(f(self.min, "min"), f(self.max, "max"), f(self.opt, "opt"));
}
bool is_fixed() const;
bool has_optimal() const;
......@@ -115,6 +119,12 @@ struct shape
shape(type_t t, std::vector<dynamic_dimension> dims);
// Construct a dynamic shape from three sets of lengths (of the same rank)
shape(type_t t,
std::vector<std::size_t> mins,
std::vector<std::size_t> maxes,
std::vector<std::size_t> opts);
template <class Range>
shape(type_t t, const Range& l) : shape(t, std::vector<std::size_t>(l.begin(), l.end()))
{
......@@ -136,6 +146,12 @@ struct shape
const std::vector<std::size_t>& lens() const;
const std::vector<std::size_t>& strides() const;
/*!
* The number of dimensions in the shape.
* Same as the number of indices required to get a data value.
*/
std::size_t ndim() const;
/*!
* Return the number of elements in the tensor.
*/
......@@ -221,6 +237,9 @@ struct shape
shape with_type(type_t t) const;
// convert the shape to an equivalent dynamic shape
shape to_dynamic() const;
friend bool operator==(const shape& x, const shape& y);
friend bool operator!=(const shape& x, const shape& y);
friend std::ostream& operator<<(std::ostream& os, const shape& x);
......
......@@ -44,7 +44,7 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
{
epsilon = parser.parse_value(info.attributes.at("epsilon")).at<float>();
}
auto x_lens = args[0]->get_shape().lens();
auto x_lens = args[0]->get_shape().max_lens();
auto x_type = args[0]->get_shape().type();
if(std::any_of(args.cbegin() + 1, args.cend(), [](auto a) {
......
......@@ -57,6 +57,12 @@ struct parse_binary_op : op_parser<parse_binary_op>
parser.parse_value(info.attributes.at("broadcast")).at<uint64_t>();
if(broadcasted != 0)
{
if(std::any_of(
args.cbegin(), args.cend(), [](auto a) { return a->get_shape().dynamic(); }))
{
MIGRAPHX_THROW(
"Binary op broadcast attribute not supported for dynamic input shapes");
}
uint64_t axis = parser.parse_value(info.attributes.at("axis")).at<uint64_t>();
auto l = info.add_instruction(
make_op("broadcast",
......
......@@ -26,6 +26,9 @@
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/tune_axis.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/stringutils.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -55,12 +58,12 @@ struct parse_split : op_parser<parse_split>
{
literal s = parser.parse_value(info.attributes.at("split"));
s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });
if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
static_cast<int64_t>(lens[tuned_axis]))
{
MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
}
else if(args.size() == 2)
{
auto s = args[1]->eval();
check_arg_empty(s, "Split: dynamic shape is not supported");
s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });
}
// no split attribute, input is equally divided
else
......@@ -74,6 +77,15 @@ struct parse_split : op_parser<parse_split>
vec_splits.resize(info.num_outputs, dl);
}
if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
static_cast<int64_t>(lens[tuned_axis]))
{
MIGRAPHX_THROW(
"PARSE_SPLIT: sum of split attribute unequal to dim size of axis! tuned axis:" +
std::to_string(lens[tuned_axis]) + " Output " + to_string_range(vec_splits) +
" Rank " + std::to_string(n_rank) + " Len outs " + to_string_range(lens));
}
std::vector<instruction_ref> ret_ins;
int64_t start = 0;
for(auto sl : vec_splits)
......
......@@ -94,11 +94,19 @@ struct module_pm : module_pass_manager
virtual void run_pass(const pass& p) override
{
assert(mod);
timer ts{};
using seconds = std::chrono::duration<double>;
trace("Module: ", mod->name(), ", Pass: ", p.name());
const double t1 = ts.record<seconds>();
assert(mod->validate() == mod->end());
p.apply(*this);
trace(*mod);
validate_pass(*mod, p, *t);
const double t2 = ts.record<seconds>();
trace("Pass: ", p.name(), " completed in (s): ", (t2 - t1));
}
};
......
......@@ -71,6 +71,19 @@ struct shape_impl
{
}
shape_impl(shape::type_t t,
std::vector<std::size_t> mins,
std::vector<std::size_t> maxes,
std::vector<std::size_t> opts)
: m_type(t)
{
assert(mins.size() == maxes.size() and maxes.size() == opts.size());
for(size_t i = 0; i < mins.size(); ++i)
{
m_dyn_dims.push_back(shape::dynamic_dimension{mins[i], maxes[i], opts[i]});
}
}
shape_impl(const std::vector<shape>& subs) : m_type(shape::tuple_type), m_shapes(subs) {}
shape::type_t m_type;
......@@ -224,6 +237,14 @@ shape::shape(type_t t, std::vector<shape::dynamic_dimension> dims)
{
}
shape::shape(type_t t,
std::vector<std::size_t> mins,
std::vector<std::size_t> maxes,
std::vector<std::size_t> opts)
: impl(std::make_shared<shape_impl>(t, std::move(mins), std::move(maxes), std::move(opts)))
{
}
shape::shape(const std::vector<shape>& subs) : impl(std::make_shared<shape_impl>(subs)) {}
shape::shape(std::shared_ptr<shape_impl> pimpl) : impl(std::move(pimpl)) {}
......@@ -244,6 +265,15 @@ const std::vector<std::size_t>& shape::lens() const { return impl->m_lens; }
const std::vector<std::size_t>& shape::strides() const { return impl->m_strides; }
std::size_t shape::ndim() const
{
if(this->dynamic())
{
return dyn_dims().size();
}
return lens().size();
}
std::size_t shape::elements() const { return impl->elements(); }
std::size_t shape::bytes() const
......@@ -437,6 +467,16 @@ shape shape::with_type(type_t t) const
return {c};
}
shape shape::to_dynamic() const
{
if(this->dynamic())
{
return *this;
}
std::vector<std::size_t> zeroes(this->ndim(), 0);
return {type(), lens(), lens(), zeroes};
}
std::size_t shape::element_space() const { return impl->element_space(); }
std::string shape::type_string() const { return name(this->type()); }
......@@ -464,15 +504,11 @@ bool shape::dynamic_dimension::is_fixed() const { return this->min == this->max;
bool shape::dynamic_dimension::has_optimal() const { return opt != 0; }
template <class Self, class F>
auto shape::dynamic_dimension::reflect(Self& self, F f)
{
return pack(f(self.min, "min"), f(self.max, "max"), f(self.opt, "opt"));
}
bool operator==(const shape::dynamic_dimension& x, const shape::dynamic_dimension& y)
{
return (x.min == y.min and x.max == y.max and x.opt == y.opt);
// don't check opt if both are fixed
return (x.min == y.min and x.max == y.max and
((x.is_fixed() and y.is_fixed()) or (x.opt == y.opt)));
}
bool operator!=(const shape::dynamic_dimension& x, const shape::dynamic_dimension& y)
......
......@@ -64,7 +64,7 @@ std::size_t compile_miopen::compile(operation& op, instruction_ref ins, bool for
{
op.from_value({{"int8_x4_format", format}});
auto v = op.compile(*ctx, ins->get_shape(), to_shapes(ins->inputs()));
return v.get("workspace", 0);
return v.get<std::size_t>("workspace", 0);
}
void compile_miopen::apply(module& m) const
......
......@@ -40,18 +40,25 @@ MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_GPU_COMPILE_PARALLEL);
struct precompile_op
{
operation op = op::identity{};
std::size_t additional_args = 1;
bool ignore_modules = false;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.op, "op"));
return pack(f(self.op, "op"),
f(self.additional_args, "additional_args"),
f(self.ignore_modules, "ignore_modules"));
}
std::string name() const { return "gpu::precompile_op"; }
shape compute_shape(std::vector<shape> inputs, const std::vector<module_ref>& mods) const
{
inputs.pop_back();
// Pop off additional args
inputs.resize(inputs.size() - additional_args);
if(ignore_modules)
return op.compute_shape(inputs);
return op.compute_shape(inputs, mods);
}
......
......@@ -772,11 +772,9 @@ struct find_layernorm_pointwise
{
auto ins = r.result;
auto layernorm = r.instructions["layernorm"];
auto* pm = ins->module_inputs().front();
if(not layernorm->module_inputs().empty())
return;
auto* pm = ins->module_inputs().front();
auto inputs = layernorm->inputs();
inputs.pop_back();
inputs.insert(inputs.end(), ins->inputs().begin() + 1, ins->inputs().end());
......@@ -785,6 +783,37 @@ struct find_layernorm_pointwise
}
};
struct find_concat_pointwise
{
auto matcher() const
{
return precompile_name("pointwise")(
match::arg(0)(precompile_name("concat").bind("concat")));
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto concat = r.instructions["concat"];
if(not concat->module_inputs().empty())
return;
// TODO: Handle type conversions
if(ins->get_shape().type() != concat->get_shape().type())
return;
auto* pm = ins->module_inputs().front();
auto inputs = concat->inputs();
inputs.pop_back();
inputs.insert(inputs.end(), ins->inputs().begin() + 1, ins->inputs().end());
auto op = concat->get_operator();
op.from_value({{"additional_args", ins->inputs().size() - 1}, {"ignore_modules", true}});
m.replace_instruction(ins, op, inputs, {pm});
}
};
void fuse_ops::apply(module& m) const
{
match::find_matches(m, find_contiguous_pointwise{});
......@@ -793,6 +822,7 @@ void fuse_ops::apply(module& m) const
run_passes(m, {dead_code_elimination{}});
match::find_matches(m,
find_layernorm_pointwise{},
find_concat_pointwise{},
find_gemm_pointwise{},
find_contiguous_tranpose_gemm{},
find_commutative_broadcast{});
......
......@@ -21,7 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <rocblas.h>
#include <rocblas/rocblas.h>
#include <migraphx/gpu/gemm_impl.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/permutation.hpp>
......
......@@ -25,7 +25,7 @@
#define MIGRAPHX_GUARD_MIGRAPHLIB_ROCBLAS_HPP
#include <migraphx/manage_ptr.hpp>
#include <migraphx/config.hpp>
#include <rocblas.h>
#include <rocblas/rocblas.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......
......@@ -38,16 +38,19 @@ using namespace migraphx::gpu::gen; // NOLINT
static const char* const concat_kernel = R"__migraphx__(
#include <migraphx/kernels/concat.hpp>
#include <migraphx/kernels/vectorize.hpp>
#include <migraphx/kernels/ops.hpp>
#include <args.hpp>
namespace migraphx {
${preamble}
extern "C" {
__global__ void ${kernel}(${params})
{
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto y, auto... xs) {
concat<${axis}>(y, xs...);
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto y, ${concat_params}, auto... xs) {
concat<${axis}>(${concat_args})(${post}, y, xs...);
});
}
......@@ -68,28 +71,42 @@ struct concat_compiler : compiler<concat_compiler>
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
// TODO: Use reduce_dims
auto num_of_concat_inputs = v.get("concat_inputs", inputs.size() - 1);
hip_compile_options options;
options.inputs = inputs;
options.output = inputs.back();
options.params = "-Wno-float-equal";
options.kernel_name = v.get("kernel", "concat_kernel");
auto axis = find_fast_axis(options.inputs);
auto vec = vectorize::elements(ctx, axis, options.inputs);
options.kernel_name = v.get("kernel", "concat_kernel");
options.set_launch_params(
v, compute_global_for(ctx, get_concat_elements(options.inputs) / vec.size, 256));
auto src = interpolate_string(concat_kernel,
auto src = interpolate_string(
concat_kernel,
{{"kernel", options.kernel_name},
{"params", enum_params(inputs.size(), "void * private_p")},
{"args", enum_params(inputs.size(), "private_p")},
{"concat_params", enum_params(num_of_concat_inputs, "auto concat_x")},
{"concat_args", enum_params(num_of_concat_inputs, "concat_x")},
{"post", v.get("post", std::string{"op::id{}"})},
{"transformers", make_transformer_args(vec)},
{"preamble", v.get("preamble", std::string{})},
{"axis", v.at("axis").to<std::string>()}});
return compile_hip_code_object(src, options);
}
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
auto v = op.to_value();
if(not ins->module_inputs().empty())
{
auto* pm = ins->module_inputs().front();
v["concat_inputs"] = ins->inputs().size() - pm->get_parameter_names().size();
v["preamble"] = generate_pointwise(*pm, "post_concat");
v["post"] = "MIGRAPHX_LIFT(post_concat)";
v["kernel"] = "concat_" + generate_name_from_ops(*pm) + "_kernel";
}
return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
}
};
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment