"vscode:/vscode.git/clone" did not exist on "f33ffb9155a4ec52ba53806296452b787cf145dc"
Commit 2fc6b715 authored by Paul's avatar Paul
Browse files

Merge

parents 5967d68d 118e05c7
......@@ -44,7 +44,7 @@ struct allocate
std::string name() const { return "allocate"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
migraphx::check_shapes{inputs, *this}.has(0);
migraphx::check_shapes{inputs, *this, true}.has(0);
return s;
}
argument compute(const shape& output_shape, const std::vector<argument>&) const
......
......@@ -62,7 +62,7 @@ struct argmax
if(s0.dynamic())
{
auto dyn_dims = s0.dyn_dims();
dyn_dims[axis] = {1, 1, 0};
dyn_dims[axis] = {1, 1};
return {shape::int64_type, dyn_dims};
}
else
......
......@@ -134,7 +134,7 @@ struct concat
}
auto new_dims = inputs[0].dyn_dims();
new_dims[axis] = migraphx::shape::dynamic_dimension{new_min, new_max, 0};
new_dims[axis] = migraphx::shape::dynamic_dimension{new_min, new_max};
return {inputs[0].type(), new_dims};
}
else
......
......@@ -48,7 +48,7 @@ struct contiguous
{
check_shapes{inputs, *this, true}.has(1);
auto s0 = inputs.front();
if(s0.dynamic() or s0.standard())
if(s0.dynamic())
{
return s0;
}
......
......@@ -24,9 +24,12 @@
#ifndef MIGRAPHX_GUARD_OPERATORS_CONVOLUTION_HPP
#define MIGRAPHX_GUARD_OPERATORS_CONVOLUTION_HPP
#include <migraphx/argument.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp>
#include <migraphx/convolution.hpp>
#include <migraphx/pad_calc.hpp>
#include <migraphx/value.hpp>
#include <cmath>
#include <utility>
......@@ -35,6 +38,10 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/**
* Convolution operator. Does not support optimal dimensions for spatial dimensions. Returns empty
* optimals.
*/
struct convolution
{
std::vector<std::size_t> padding = {0, 0};
......@@ -145,7 +152,7 @@ struct convolution
else
{
auto l = input_shape.lens().at(0);
output_dyn_dims.push_back({l, l, 0});
output_dyn_dims.push_back({l, l});
}
};
......@@ -162,25 +169,30 @@ struct convolution
if(x_shape.dynamic())
{
auto x = x_shape.dyn_dims()[i + 2];
output_dyn_dims.push_back(shape::dynamic_dimension{
ceil_div(x.min, s), ceil_div(x.max, s), ceil_div(x.opt, s)});
std::set<std::size_t> optimals{};
std::transform(x.optimals.begin(),
x.optimals.end(),
std::inserter(optimals, optimals.begin()),
[&](auto o) { return ceil_div(o, s); });
output_dyn_dims.push_back(
shape::dynamic_dimension{ceil_div(x.min, s), ceil_div(x.max, s), optimals});
}
else
{
auto od = ceil_div(x_shape.lens()[i + 2], s);
output_dyn_dims.push_back(shape::dynamic_dimension{od, od, 0});
output_dyn_dims.push_back(shape::dynamic_dimension{od, od});
}
}
}
else
{
// Does not compute for optimals
auto min_spatial_dims = calc_conv_lens(x_shape.min_lens(), w_shape.max_lens());
auto max_spatial_dims = calc_conv_lens(x_shape.max_lens(), w_shape.min_lens());
auto opt_spatial_dims = calc_conv_lens(x_shape.opt_lens(), w_shape.opt_lens());
for(size_t i = 0; i < num_spatial_dims; ++i)
{
output_dyn_dims.push_back(shape::dynamic_dimension{
min_spatial_dims[i], max_spatial_dims[i], opt_spatial_dims[i]});
output_dyn_dims.push_back(
shape::dynamic_dimension{min_spatial_dims[i], max_spatial_dims[i], {}});
}
}
return shape{x_shape.type(), output_dyn_dims};
......@@ -201,6 +213,37 @@ struct convolution
check_attribute_size();
return stride.size();
}
argument compute(shape output_shape, std::vector<argument> args) const
{
std::vector<std::size_t> new_padding;
if(padding_mode != op::padding_mode_t::default_)
{
auto input_lens = args[0].get_shape().lens();
auto weights_lens = args[1].get_shape().lens();
new_padding =
padding_mode == op::same_upper
? calc_dyn_auto_pad(input_lens, weights_lens, stride, dilation, true)
: calc_dyn_auto_pad(input_lens, weights_lens, stride, dilation, false);
output_shape = compute_padded_shape(
args[0].get_shape(), args[1].get_shape(), new_padding, stride, dilation);
}
else
{
new_padding = padding;
if(output_shape.dynamic())
{
output_shape =
normalize_compute_shape({args.at(0).get_shape(), args.at(1).get_shape()});
}
}
argument result{output_shape};
visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
migraphx::convolution(output, input, weights, new_padding, stride, group);
});
return result;
}
};
} // namespace op
......
......@@ -40,7 +40,11 @@ struct dequantizelinear
std::string name() const { return "dequantizelinear"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.same_dims();
check_shapes{inputs, *this}.same_dims().has(2, 3);
if(inputs.size() == 3 and inputs[0].type() != inputs[2].type())
{
MIGRAPHX_THROW("DEQUANTIZELINEAR: Zero point and input should be the same type.");
}
return {inputs[1].type(), inputs[0].lens(), inputs[0].strides()};
}
......
......@@ -29,6 +29,7 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -59,27 +60,22 @@ struct flatten
auto s = inputs[0];
if(s.dynamic())
{
// Doesn't handle optimals
auto min_lens = s.min_lens();
auto max_lens = s.max_lens();
auto opt_lens = s.opt_lens();
// If any of the opt values is 0, output opt will be 0
shape::dynamic_dimension x = {
std::accumulate(
min_lens.begin(), min_lens.begin() + axis, std::size_t{1}, std::multiplies<>{}),
std::accumulate(
max_lens.begin(), max_lens.begin() + axis, std::size_t{1}, std::multiplies<>{}),
std::accumulate(opt_lens.begin(),
opt_lens.begin() + axis,
std::size_t{1},
std::multiplies<>{})};
{}};
shape::dynamic_dimension y = {
std::accumulate(
min_lens.begin() + axis, min_lens.end(), std::size_t{1}, std::multiplies<>{}),
std::accumulate(
max_lens.begin() + axis, max_lens.end(), std::size_t{1}, std::multiplies<>{}),
std::accumulate(
opt_lens.begin() + axis, opt_lens.end(), std::size_t{1}, std::multiplies<>{}),
};
{}};
return {s.type(), {x, y}};
}
else
......
......@@ -121,7 +121,7 @@ struct gathernd
// A rank 0 output is a scalar
if(output_ndim == 0)
return shape(data_shape.type(), {shape::dynamic_dimension({1, 1, 0})});
return shape(data_shape.type(), {shape::dynamic_dimension({1, 1})});
// Part of the output shape comes from indices tensor, part from data tensor
std::vector<shape::dynamic_dimension> output_dims(output_ndim);
......
......@@ -119,8 +119,8 @@ struct nonmaxsuppression
fixed_shape_error_check();
}
std::vector<shape::dynamic_dimension> out_lens = {};
out_lens.push_back({0, max_num_boxes, 0});
out_lens.push_back({3, 3, 0});
out_lens.push_back({0, max_num_boxes});
out_lens.push_back({3, 3});
return {shape::int64_type, out_lens};
}
else
......
......@@ -89,25 +89,17 @@ struct pooling
std::vector<std::size_t> output_lens{};
for(size_t i = 0; i < kdims; ++i)
{
if(input_lens[i + 2] == 0)
{
// handle opt = 0
output_lens.push_back(0);
}
else
{
std::size_t padding_factor = 2 * padding[i];
if(padding.size() == 2 * kdims)
padding_factor = padding[i] + padding[i + kdims];
assert(input_lens[i + 2] + padding_factor >= lengths[i]);
std::size_t dim_size = input_lens[i + 2] + padding_factor - lengths[i];
std::size_t len =
(ceil_mode)
? dim_size / stride[i] + static_cast<std::size_t>((dim_size % stride[i] !=
0)) // ceil uint divide
: dim_size / stride[i]; // floor divide
output_lens.push_back(len + 1);
}
std::size_t padding_factor = 2 * padding[i];
if(padding.size() == 2 * kdims)
padding_factor = padding[i] + padding[i + kdims];
assert(input_lens[i + 2] + padding_factor >= lengths[i]);
std::size_t dim_size = input_lens[i + 2] + padding_factor - lengths[i];
std::size_t len =
(ceil_mode)
? dim_size / stride[i] +
static_cast<std::size_t>((dim_size % stride[i] != 0)) // ceil uint divide
: dim_size / stride[i]; // floor divide
output_lens.push_back(len + 1);
}
return output_lens;
}
......@@ -134,19 +126,19 @@ struct pooling
{
for(size_t i = 0; i < kdims; ++i)
{
output_dyn_dims.push_back(shape::dynamic_dimension{1, 1, 1});
output_dyn_dims.push_back(shape::dynamic_dimension{1, 1});
}
return {input.type(), output_dyn_dims};
}
else
{
// does not compute for optimals
auto min_spatial_dims = calc_spatial_dim_out(input.min_lens(), kdims);
auto max_spatial_dims = calc_spatial_dim_out(input.max_lens(), kdims);
auto opt_spatial_dims = calc_spatial_dim_out(input.opt_lens(), kdims);
for(size_t i = 0; i < kdims; ++i)
{
output_dyn_dims.push_back(shape::dynamic_dimension{
min_spatial_dims[i], max_spatial_dims[i], opt_spatial_dims[i]});
output_dyn_dims.push_back(
shape::dynamic_dimension{min_spatial_dims[i], max_spatial_dims[i], {}});
}
return {input.type(), output_dyn_dims};
}
......
......@@ -25,8 +25,10 @@
#define MIGRAPHX_GUARD_OPERATORS_QUANT_CONVOLUTION_HPP
#include <migraphx/op/common.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp>
#include <migraphx/convolution.hpp>
#include <migraphx/value.hpp>
#include <cmath>
#include <utility>
......@@ -114,6 +116,17 @@ struct quant_convolution
check_attribute_size();
return stride.size();
}
argument compute(shape output_shape, std::vector<argument> args) const
{
argument result{output_shape};
result.visit([&](auto output) {
visit_all(args[0], args[1])([&](auto input, auto weights) {
migraphx::convolution(output, input, weights, padding, stride, group);
});
});
return result;
}
};
} // namespace op
......
......@@ -40,7 +40,11 @@ struct quantizelinear
std::string name() const { return "quantizelinear"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.same_dims();
check_shapes{inputs, *this}.same_dims().has(2, 3);
if(inputs[0].type() != inputs[1].type())
{
MIGRAPHX_THROW("QUANTIZELINEAR: Scales and input must be the same type");
}
if(inputs.size() == 3)
{
return {inputs[2].type(), inputs[0].lens(), inputs[0].strides()};
......@@ -61,17 +65,15 @@ struct quantizelinear
argument result{output_shape};
visit_all(result, y_zero_point)([&](auto output, auto zero_pts) {
x.visit([&](auto input) {
y_scale.visit([&](auto scales) {
using quant_type = typename decltype(output)::value_type;
auto min_value = std::numeric_limits<quant_type>::min();
auto max_value = std::numeric_limits<quant_type>::max();
par_for(output_shape.elements(), [&](auto i) {
int64_t quantized = static_cast<int64_t>(std::round(input[i] / scales[i])) +
static_cast<int64_t>(zero_pts[i]);
output[i] = std::max(static_cast<int64_t>(min_value),
std::min(static_cast<int64_t>(max_value), quantized));
});
visit_all(x, y_scale)([&](auto input, auto scales) {
using quant_type = typename decltype(output)::value_type;
auto min_value = std::numeric_limits<quant_type>::min();
auto max_value = std::numeric_limits<quant_type>::max();
par_for(output_shape.elements(), [&](auto i) {
int64_t quantized = static_cast<int64_t>(std::round(input[i] / scales[i])) +
static_cast<int64_t>(zero_pts[i]);
output[i] = std::max(static_cast<int64_t>(min_value),
std::min(static_cast<int64_t>(max_value), quantized));
});
});
});
......
......@@ -91,7 +91,7 @@ struct reduce_op : op_name<Derived>
{
value normalize;
normalize["axes"] = value::array{normalize_attribute::include_min};
return {{"normalize_axes", normalize}};
return {{"normalize_axes", normalize}, {"reduce", true}};
}
std::vector<int64_t> tune_axes(std::size_t n_dim) const
......@@ -123,9 +123,7 @@ struct reduce_op : op_name<Derived>
auto tuned_axes = tune_axes(output_dyn_dims.size());
for(const auto& axis : tuned_axes)
{
// At the time of writing, there's no functional difference between
// optimum of 0 (no opt) or 1.
output_dyn_dims[axis] = {1, 1, 0};
output_dyn_dims[axis] = {1, 1};
}
return shape{s.type(), output_dyn_dims};
......
......@@ -29,6 +29,7 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/optional.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -115,6 +116,10 @@ struct reshape
StrideIterator stride_start,
StrideIterator stride_last)
{
<<<<<<< HEAD
=======
assert(std::distance(dim_start, dim_last) == std::distance(stride_start, stride_last));
>>>>>>> origin/reshape-nonstandard
auto cstride = *std::prev(stride_last);
return std::equal(std::make_reverse_iterator(dim_last),
std::make_reverse_iterator(dim_start + 1),
......@@ -126,11 +131,93 @@ struct reshape
});
}
<<<<<<< HEAD
shape static_compute_shape(std::vector<shape> inputs, std::size_t n_neg_dims) const
{
check_shapes{inputs, *this}.has(1);
auto&& idims = inputs.front().lens();
auto&& istrides = inputs.front().strides();
=======
static optional<shape> reshape_dims(const shape& input, const std::vector<std::size_t>& rdims)
{
if(input.standard())
return shape{input.type(), rdims};
const auto& idims = input.lens();
const auto& istrides = input.strides();
std::vector<std::size_t> rstrides;
std::size_t i = 0;
std::size_t r = 0;
while(i < idims.size() and r < rdims.size())
{
auto idim = idims[i];
auto rdim = rdims[r];
if(rdim == idim)
{
rstrides.push_back(istrides[i]);
}
// squeeze
else if(rdim > idim)
{
auto start = idims.begin() + i;
auto it = compute_end_dim(start, idims.end(), rdim);
if(it == start)
return nullopt;
auto n = it - start;
if((i + n) > istrides.size())
return nullopt;
if(not can_strides_merge(
start, it + 1, istrides.begin() + i, istrides.begin() + i + n + 1))
return nullopt;
i += n;
rstrides.push_back(istrides[i]);
}
// unsqueeze
else // if(rdim < idim)
{
auto start = rdims.begin() + i;
auto it = compute_end_dim(start, rdims.end(), idim);
if(it == start)
return nullopt;
auto n = it - start;
if((r + n) > rdims.size())
return nullopt;
auto stride = istrides[i] * idim;
std::for_each(start, it + 1, [&](auto dim) {
stride /= dim;
rstrides.push_back(stride);
});
r += n;
}
i++;
r++;
}
// Handle trailing 1s
if(rstrides.size() < rdims.size() and not rstrides.empty())
{
auto stride = rstrides.back();
for(auto d : range(rdims.begin() + rstrides.size(), rdims.end()))
{
if(d != 1)
return nullopt;
rstrides.push_back(stride);
}
}
if(rdims.size() != rstrides.size())
return nullopt;
return shape{input.type(), rdims, rstrides};
}
shape static_compute_shape(std::vector<shape> inputs, std::size_t n_neg_dims) const
{
check_shapes{inputs, *this}.has(1);
auto&& idims = inputs.front().lens();
// auto&& istrides = inputs.front().strides();
>>>>>>> origin/reshape-nonstandard
std::vector<std::size_t> rdims(dims.begin(), dims.end());
for(std::size_t i = 0; i < dims.size(); i++)
......@@ -156,6 +243,7 @@ struct reshape
}
}
<<<<<<< HEAD
shape s;
if(inputs.front().standard())
{
......@@ -232,10 +320,19 @@ struct reshape
assert(s.bytes() == inputs.front().bytes());
if(s.elements() != inputs.front().elements())
=======
auto s = reshape_dims(inputs.front(), rdims);
if(not s.has_value())
MIGRAPHX_THROW("Reshape on axis that is not packed.");
if(s->elements() != inputs.front().elements())
>>>>>>> origin/reshape-nonstandard
MIGRAPHX_THROW("Reshape: Wrong number of elements for reshape: reshape has " +
std::to_string(s.elements()) + " elements whereas the input has " +
std::to_string(s->elements()) + " elements whereas the input has " +
std::to_string(inputs.front().elements()));
return s;
assert(s->bytes() == inputs.front().bytes());
return *s;
}
shape compute_shape(std::vector<shape> inputs) const
......
......@@ -43,50 +43,100 @@ struct select_module
std::string name() const { return "select_module"; }
shape compute_shape(const std::vector<shape>&, const std::vector<module_ref>&) const
shape compute_shape(const std::vector<shape>& inputs, const std::vector<module_ref>&) const
{
check_shapes{inputs, *this, true}.has_at_least(1);
return shape{output_dyn_shapes};
}
std::vector<std::string> get_input_parameter_names(module_ref mod) const
{
auto param_names = mod->get_parameter_names();
std::vector<std::string> ret;
std::copy_if(param_names.cbegin(),
param_names.cend(),
std::back_inserter(ret),
[](auto pn) { return not contains(pn, "#output_"); });
return ret;
}
std::vector<std::string> get_output_parameter_names(module_ref mod) const
{
auto param_names = mod->get_parameter_names();
std::vector<std::string> ret;
std::copy_if(param_names.cbegin(),
param_names.cend(),
std::back_inserter(ret),
[](auto pn) { return contains(pn, "#output_"); });
return ret;
}
argument compute(const shape&,
const std::vector<argument>& args,
const std::vector<module_ref>& submodule_list,
const std::function<std::vector<argument>(
module_ref&, const std::unordered_map<std::string, argument>&)>& run) const
{
// find submodule with input parameter shapes exactly the same as the input arguments
// assuming arguments are in the same order as the input parameters
// Find submodule with input parameter shapes exactly the same as the input instruction
// arguments. Assuming instruction arguments are in the same order as the instruction
// parameters.
auto module_iter =
std::find_if(submodule_list.cbegin(), submodule_list.cend(), [&](module_ref mr) {
auto param_names = mr->get_parameter_names();
assert(param_names.size() <= args.size());
return std::equal(param_names.cbegin(),
param_names.cend(),
args.cbegin(),
[&](auto p_name, auto a) {
return a.get_shape() == mr->get_parameter_shape(p_name);
});
auto in_param_names = get_input_parameter_names(mr);
auto param_shapes = mr->get_parameter_shapes();
assert(in_param_names.size() <= args.size());
return std::equal(
in_param_names.cbegin(),
in_param_names.cend(),
args.cbegin(),
[&](auto p_name, auto a) { return a.get_shape() == param_shapes[p_name]; });
});
if(module_iter == submodule_list.end())
{
MIGRAPHX_THROW("SELECT_MODULE: no compatible submodules found for given input shapes");
}
auto* module_to_run = *module_iter;
std::unordered_map<std::string, argument> params;
std::unordered_map<std::string, argument> p_map;
// add input parameters
auto param_names = module_to_run->get_parameter_names();
assert(param_names.size() <= args.size());
std::transform(param_names.begin(),
param_names.end(),
// add input parameters to parameter_map
auto in_param_names = get_input_parameter_names(module_to_run);
assert(in_param_names.size() <= args.size());
std::transform(in_param_names.begin(),
in_param_names.end(),
args.begin(),
std::inserter(params, params.end()),
[](auto&& name, auto&& a) { return std::make_pair(name, a); });
std::inserter(p_map, p_map.end()),
[&](auto&& name, auto&& a) { return std::make_pair(name, a); });
auto results = run(module_to_run, params);
// One tuple output parameter in main module to multiple output parameters in submodule
auto out_param_names = get_output_parameter_names(module_to_run);
auto output_sub_objects = args.back().get_sub_objects();
assert(out_param_names.size() == output_sub_objects.size());
std::transform(out_param_names.begin(),
out_param_names.end(),
output_sub_objects.begin(),
std::inserter(p_map, p_map.end()),
[&](auto&& name, auto&& a) {
auto ps = module_to_run->get_parameter_shape(name);
if(a.get_shape() != ps)
{
assert(ps.bytes() == a.get_shape().bytes());
return std::make_pair(name, a.reshape(ps));
}
else
{
return std::make_pair(name, a);
}
});
auto results = run(module_to_run, p_map);
return argument{results};
}
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
};
} // namespace op
......
......@@ -111,16 +111,15 @@ struct slice
// For a static shape, old_lens will be adjusted to a new size
// for those axes that are sliced.
// For dynamic shape, the adjusted old_lens become the new max values,
// while updating the old mins and opts if possible.
// while updating the old mins and optimals if possible.
std::vector<std::size_t> new_mins;
std::vector<std::size_t> new_opts;
std::vector<std::size_t> old_lens;
std::vector<std::size_t> old_strides;
// Doesn't handle optimals
if(input_shape.dynamic())
{
old_lens = input_shape.max_lens();
new_mins = input_shape.min_lens();
new_opts = input_shape.opt_lens();
}
else
{
......@@ -146,17 +145,11 @@ struct slice
std::size_t sliced_min_length = ends[i] - starts[i];
// if the slice size is smaller than maxes but larger than mins
new_mins[axis] = std::min(sliced_min_length, new_mins[axis]);
auto sliced_opt_length = ends[i] - starts[i];
if(new_opts[axis] != 0)
new_opts[axis] = sliced_opt_length;
if(new_opts[axis] < new_mins[axis] or new_opts[axis] > new_lens[axis])
new_opts[axis] = 0;
}
}
if(input_shape.dynamic())
{
return shape{t, new_mins, new_lens, new_opts};
return shape{t, new_mins, new_lens, {}};
}
else
{
......
......@@ -81,7 +81,7 @@ struct unsqueeze
{
if(std::find(axes.begin(), axes.end(), i) != axes.end())
{
dyn_dims.push_back({1, 1, 0});
dyn_dims.push_back({1, 1});
}
else
{
......
......@@ -39,6 +39,7 @@ struct module_pass_manager
virtual module& get_module() = 0;
virtual module* create_module(const std::string& name) = 0;
virtual module* get_common_parent() = 0;
virtual module* get_root_module() = 0;
virtual void run_pass(const pass& p) = 0;
protected:
......
......@@ -26,6 +26,7 @@
#include <migraphx/config.hpp>
#include <migraphx/filesystem.hpp>
#include <functional>
#include <string>
#include <memory>
......@@ -36,6 +37,7 @@ struct process_impl;
struct process
{
using writer = std::function<void(const char*, std::size_t)>;
process(const std::string& cmd);
// move constructor
......@@ -49,6 +51,7 @@ struct process
process& cwd(const fs::path& p);
void exec();
void write(std::function<void(process::writer)> pipe_in);
private:
std::unique_ptr<process_impl> impl;
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -21,20 +21,27 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/memory_coloring.hpp>
#include "memory_coloring_impl.hpp"
#ifndef MIGRAPHX_GUARD_RTGLIB_PROMOTE_LITERALS_HPP
#define MIGRAPHX_GUARD_RTGLIB_PROMOTE_LITERALS_HPP
#include <string>
#include <migraphx/pass_manager.hpp>
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
void memory_coloring::apply(module& m) const
/**
* Replace literals in submodules with literals in the root module.
* Intended to allow for reuse of the literals between submodules.
*/
struct promote_literals
{
if(not enabled(MIGRAPHX_DISABLE_MEMORY_COLORING{}))
{
memory_coloring_impl opt(&m, allocation_op, verify);
opt.run();
}
}
std::string name() const { return "promote_literals"; }
void apply(module_pass_manager&) const;
};
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment