Commit 2d7f3523 authored by Shucai Xiao's avatar Shucai Xiao
Browse files

rewrite the gru operator to support two outputs.

parent 1fbe8c48
......@@ -1167,6 +1167,20 @@ struct rnn_last_output
}
};
struct gru_last_output
{
std::string name() const { return "gru_last_output"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
auto dims = inputs[0].lens();
// remove the first dimension, remaing are output shape
dims.erase(dims.begin());
return {inputs[0].type(), dims};
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -13,7 +13,7 @@ inline namespace MIGRAPHX_INLINE_NS {
struct program;
/**
* Rewrite rnn to gemm and add.
* Rewrite gru to gemm, mul, and add.
*/
struct rewrite_gru
{
......@@ -21,14 +21,14 @@ struct rewrite_gru
void apply(program& prog) const;
private:
std::vector<instruction_ref> gru_oper(bool is_forward,
std::vector<instruction_ref> gru_cell(bool is_forward,
program& prog,
instruction_ref ins,
instruction_ref input,
instruction_ref wx,
instruction_ref wh,
instruction_ref ih,
instruction_ref bias,
instruction_ref ih,
int linear_before_reset,
operation& actv_func1,
operation& actv_func2) const;
......
......@@ -732,14 +732,14 @@ struct onnx_parser
std::move(args));
result.push_back(hidden_states);
// second out for the last hidden state
// second output for the last hidden state
auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
result.push_back(last_output);
return result;
}
instruction_ref
std::vector<instruction_ref>
parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
{
migraphx::shape input_shape = args[0]->get_shape();
......@@ -842,9 +842,18 @@ struct onnx_parser
linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
}
return prog.add_instruction(
std::vector<instruction_ref> result;
// first output for concatenation of hidden states
auto hidden_states = prog.add_instruction(
op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
std::move(args));
result.push_back(hidden_states);
// second output for last gru output
auto last_output = prog.add_instruction(op::gru_last_output{}, hidden_states);
result.push_back(last_output);
return result;
}
void parse_from(std::istream& is)
......
This diff is collapsed.
......@@ -26,7 +26,7 @@ void rewrite_rnn::apply(program& prog) const
std::size_t hidden_size = args[1]->get_shape().lens()[1];
std::size_t batch_size = seq_shape.lens()[1];
shape::type_t type = seq_shape.type();
migraphx::shape ih_shape{type, {batch_size, hidden_size}};
migraphx::shape ih_shape{type, {1, batch_size, hidden_size}};
std::vector<char> data(ih_shape.bytes(), 0);
auto rnn_op = any_cast<op::rnn>(ins->get_operator());
......@@ -133,7 +133,7 @@ void rewrite_rnn::apply(program& prog) const
}
// rewrite the rnn_last_output operator that right after the rnn
// operator. Intuitively, we can do a slice on the input to get
// operator. Intuitively, we can do a slice on its input to get
// the last output, but it is already existed in the rnn operator,
// so we can just use it as the output here
if(ins->name() == "rnn_last_output")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment