"...targets/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "2bbb50c42b3a3767fdf8d77e8aaa5a11a8e887fe"
Commit 2d33413c authored by Shucai Xiao's avatar Shucai Xiao
Browse files

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/AMDMIGraphX into int8_quantize

parents 881665a8 fef8086c
......@@ -24,9 +24,11 @@ add_library(migraphx_device
device/tan.cpp
device/sinh.cpp
device/cosh.cpp
device/tanh.cpp
device/asin.cpp
device/acos.cpp
device/atan.cpp
device/relu.cpp
device/add_relu.cpp
device/contiguous.cpp
device/logsoftmax.cpp
......@@ -72,9 +74,7 @@ add_library(migraphx_gpu
logsoftmax.cpp
contiguous.cpp
concat.cpp
relu.cpp
leaky_relu.cpp
tanh.cpp
batchnorm.cpp
write_literals.cpp
rocblas.cpp
......
#include <migraphx/gpu/device/relu.hpp>
#include <migraphx/gpu/device/nary.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
void relu(hipStream_t stream, const argument& result, const argument& arg)
{
nary(stream, result, arg)([](auto x) { return std::max<decltype(x)>(0, x); });
}
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#include <migraphx/gpu/device/tanh.hpp>
#include <migraphx/gpu/device/nary.hpp>
#include <migraphx/gpu/device/types.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
void tanh(hipStream_t stream, const argument& result, const argument& arg)
{
nary(stream, result, arg)([](auto x) { return ::tanh(to_hip_type(x)); });
}
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_RELU_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_RELU_HPP
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <hip/hip_runtime_api.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
void relu(hipStream_t stream, const argument& result, const argument& arg);
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_TANH_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_TANH_HPP
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <hip/hip_runtime_api.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
void tanh(hipStream_t stream, const argument& result, const argument& arg);
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_RELU_HPP
#define MIGRAPHX_GUARD_RTGLIB_RELU_HPP
#include <migraphx/shape.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/relu.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -10,24 +10,8 @@ namespace gpu {
struct context;
struct miopen_relu
struct hip_relu : unary_device<hip_relu, device::relu>
{
shared<activation_descriptor> ad;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return gpu::reflect(self.ad.get(), f);
}
std::string name() const { return "gpu::relu"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
};
} // namespace gpu
......
#ifndef MIGRAPHX_GUARD_RTGLIB_TANH_HPP
#define MIGRAPHX_GUARD_RTGLIB_TANH_HPP
#include <migraphx/shape.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/tanh.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
struct miopen_tanh
struct hip_tanh : unary_device<hip_tanh, device::tanh>
{
shared<activation_descriptor> ad;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return gpu::reflect(self.ad.get(), f);
}
std::string name() const { return "gpu::tanh"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
};
} // namespace gpu
......
......@@ -87,10 +87,8 @@ struct miopen_apply
void init()
{
this->last = instruction::get_output_alias(std::prev(prog->end()));
add_miopen_simple_op<miopen_relu>("relu", make_relu);
add_miopen_simple_op<miopen_sigmoid>("sigmoid", make_sigmoid);
add_miopen_simple_op<miopen_abs>("abs", make_abs);
add_miopen_simple_op<miopen_tanh>("tanh", make_tanh);
add_miopen_extend_op<miopen_leaky_relu, op::leaky_relu>("leaky_relu", make_leaky_relu);
add_miopen_extend_op<miopen_elu, op::elu>("elu", make_elu);
......@@ -105,6 +103,7 @@ struct miopen_apply
add_generic_op<hip_tan>("tan");
add_generic_op<hip_sinh>("sinh");
add_generic_op<hip_cosh>("cosh");
add_generic_op<hip_tanh>("tanh");
add_generic_op<hip_asin>("asin");
add_generic_op<hip_acos>("acos");
add_generic_op<hip_atan>("atan");
......@@ -117,6 +116,7 @@ struct miopen_apply
add_generic_op<hip_round>("round");
add_generic_op<hip_pow>("pow");
add_generic_op<hip_sqdiff>("sqdiff");
add_generic_op<hip_relu>("relu");
add_generic_op<hip_sign>("sign");
add_extend_op<miopen_gemm, op::dot>("dot");
......
#include <migraphx/gpu/relu.hpp>
#include <migraphx/gpu/context.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape miopen_relu::compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(2).not_broadcasted();
return inputs.at(1);
}
argument miopen_relu::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
float alpha = 1;
float beta = 0;
auto x_desc = make_tensor(args[0].get_shape());
auto y_desc = make_tensor(output_shape);
miopenActivationForward(ctx.get_stream().get_miopen(),
ad.get(),
&alpha,
x_desc.get(),
args[0].implicit(),
&beta,
y_desc.get(),
args[1].implicit());
return args[1];
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#include <migraphx/gpu/tanh.hpp>
#include <migraphx/gpu/context.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape miopen_tanh::compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(2).packed();
return inputs.at(0);
}
argument miopen_tanh::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
float alpha = 1;
float beta = 0;
auto x_desc = make_tensor(args[0].get_shape());
auto y_desc = make_tensor(output_shape);
miopenActivationForward(ctx.get_stream().get_miopen(),
ad.get(),
&alpha,
x_desc.get(),
args[0].implicit(),
&beta,
y_desc.get(),
args[1].implicit());
return args[1];
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -181,6 +181,7 @@ struct tf_parser
add_mem_op("Pack", &tf_parser::parse_pack, false);
add_mem_op("Pad", &tf_parser::parse_pad);
add_mem_op("Reshape", &tf_parser::parse_reshape, false);
add_mem_op("Slice", &tf_parser::parse_slice, false);
add_mem_op("Softmax", &tf_parser::parse_softmax<op::softmax>);
add_mem_op("Squeeze", &tf_parser::parse_squeeze, false);
add_mem_op("StridedSlice", &tf_parser::parse_stridedslice);
......@@ -733,6 +734,29 @@ struct tf_parser
}
}
instruction_ref
parse_slice(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
{
op::slice op;
auto starts = args[1]->eval().get<int32_t>().to_vector();
auto size = args[2]->eval().get<int32_t>().to_vector();
auto axes = args[0]->get_shape().lens();
size_t num_axes = axes.size();
op.starts = std::vector<int64_t>(starts.begin(), starts.end());
op.ends = std::vector<int64_t>(num_axes);
op.axes = std::vector<int64_t>(num_axes);
std::iota(op.axes.begin(), op.axes.end(), 0);
for(size_t i = 0; i < num_axes; i++)
{
if(size[i] == -1)
op.ends[i] = axes[i];
else
op.ends[i] = starts[i] + size[i];
}
return prog.add_instruction(op, make_contiguous(args[0]));
}
// template to facilitate the logsoftmax later
template <class Op>
instruction_ref parse_softmax(const std::string&,
......
......@@ -412,6 +412,26 @@ TEST_CASE(rsqrt_test)
EXPECT(p == prog);
}
TEST_CASE(slice_test)
{
migraphx::program p;
std::size_t num_axes = 2;
auto l0 = p.add_parameter("0", migraphx::shape{migraphx::shape::float_type, {5, 10}});
migraphx::shape s0{migraphx::shape::int32_type, {num_axes}};
p.add_literal(migraphx::literal{s0, {1, 0}});
p.add_literal(migraphx::literal{s0, {2, -1}});
migraphx::op::slice op;
op.starts = {1, 0};
op.ends = {3, 10};
op.axes = std::vector<int64_t>(num_axes);
std::iota(op.axes.begin(), op.axes.end(), 0);
p.add_instruction(op, l0);
auto prog = optimize_tf("slice_test.pb", false);
EXPECT(p == prog);
}
TEST_CASE(softmax_test)
{
migraphx::program p;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment