Unverified Commit 28f5f835 authored by Cagri Eryilmaz's avatar Cagri Eryilmaz Committed by GitHub
Browse files

Bert squad example (#779)



* initial push for bert-squad example

* migraphx and ort implementation + json input sample

* notebook draft

* first working example for bert-squad with migraphx

* cleaning up ORT example

* updated inputs file, 3 questions

* Simple and rather ugly readme. Requirements file

* formatting

* updates to readme file

* Update README.md

* Update README.md

* cleanup

* no need timer function for now

* jupyter notebook example

* updates to notebook file

* readme flow change

* typo in notebook

* another example input file

* cleanup

* benchmark file

* formatting

* bert update to examples readme file

* formatting

* missed another formatting

* removed path workaround from .py and notebook

* renaming requirements file to requirements_bertsquad.txt

* no need for bench and ort files

* reflecting requirement file name change in notebook

* removing duplicates of import json

* formatting
Co-authored-by: default avatarroot <root@rocm-framework-1.amd.com>
Co-authored-by: default avatarkahmed10 <15948690+kahmed10@users.noreply.github.com>
parent 35d1bcc2
......@@ -11,3 +11,4 @@ This directory contains examples of common use cases for MIGraphX.
- [MIGraphX Docker Container](./migraphx_docker)
- [MIGraphX Driver](./migraphx_driver)
- [Python Resnet50 Inference](./python_api_inference)
- [Python BERT SQuAD Inference](./python_bert_squad_example)
\ No newline at end of file
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# BERT-SQuAD Inference Example with AMD MIGraphX"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This tutorial shows how to run the BERT-Squad model on ONNX-Runtime with MIGraphX backend."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Requirements "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip3 install -r requirements_bertsquad.txt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import json\n",
"import time\n",
"import os.path\n",
"from os import path\n",
"import sys\n",
"\n",
"import tokenization\n",
"from run_onnx_squad import *\n",
"\n",
"import migraphx"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download BERT ONNX file"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!wget -nc https://github.com/onnx/models/raw/master/text/machine_comprehension/bert-squad/model/bertsquad-10.onnx"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download uncased file / vocabulary"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!apt-get install unzip\n",
"!wget -q -nc https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip\n",
"!unzip -n uncased_L-12_H-768_A-12.zip"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Input data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"input_file = 'inputs.json'\n",
"with open(input_file) as json_file:\n",
" test_data = json.load(json_file)\n",
" print(json.dumps(test_data, indent=2))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Configuration for inference"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"max_seq_length = 256\n",
"doc_stride = 128\n",
"max_query_length = 64\n",
"batch_size = 1\n",
"n_best_size = 20\n",
"max_answer_length = 30"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Read vocabulary file and tokenize"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab_file = os.path.join('uncased_L-12_H-768_A-12', 'vocab.txt')\n",
"tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file,\n",
" do_lower_case=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convert the example to features to input"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# preprocess input\n",
"predict_file = 'inputs.json'\n",
"\n",
"# Use read_squad_examples method from run_onnx_squad to read the input file\n",
"eval_examples = read_squad_examples(input_file=predict_file)\n",
"\n",
"# Use convert_examples_to_features method from run_onnx_squad to get parameters from the input\n",
"input_ids, input_mask, segment_ids, extra_data = convert_examples_to_features(\n",
" eval_examples, tokenizer, max_seq_length, doc_stride, max_query_length)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compile with MIGraphX for GPU"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = migraphx.parse_onnx(\"bertsquad-10.onnx\")\n",
"model.compile(migraphx.get_target(\"gpu\"))\n",
"#model.print()\n",
"\n",
"model.get_parameter_names()\n",
"model.get_parameter_shapes()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run the input through the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"n = len(input_ids)\n",
"bs = batch_size\n",
"all_results = []\n",
"\n",
"for idx in range(0, n):\n",
" item = eval_examples[idx]\n",
" print(item)\n",
"\n",
" result = model.run({\n",
" \"unique_ids_raw_output___9:0\":\n",
" np.array([item.qas_id], dtype=np.int64),\n",
" \"input_ids:0\":\n",
" input_ids[idx:idx + bs],\n",
" \"input_mask:0\":\n",
" input_mask[idx:idx + bs],\n",
" \"segment_ids:0\":\n",
" segment_ids[idx:idx + bs]\n",
" })\n",
"\n",
" in_batch = result[1].get_shape().lens()[0]\n",
" print(in_batch)\n",
" start_logits = [float(x) for x in result[1].tolist()]\n",
" end_logits = [float(x) for x in result[0].tolist()]\n",
" # print(start_logits)\n",
" # print(end_logits)\n",
" for i in range(0, in_batch):\n",
" unique_id = len(all_results)\n",
" all_results.append(\n",
" RawResult(unique_id=unique_id,\n",
" start_logits=start_logits,\n",
" end_logits=end_logits))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get the predictions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output_dir = 'predictions'\n",
"os.makedirs(output_dir, exist_ok=True)\n",
"output_prediction_file = os.path.join(output_dir, \"predictions.json\")\n",
"output_nbest_file = os.path.join(output_dir, \"nbest_predictions.json\")\n",
"write_predictions(eval_examples, extra_data, all_results, n_best_size,\n",
" max_answer_length, True, output_prediction_file,\n",
" output_nbest_file)\n",
"\n",
"with open(output_prediction_file) as json_file:\n",
" test_data = json.load(json_file)\n",
" print(json.dumps(test_data, indent=2))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
# BERT-SQuAD Example with MIGraphX
Question answering with BERT using MIGraphX optimizations on ROCm platform.
There are two ways to run the example:
1) Install MIGraphX and Jupyter notebook to your system and then utilize `BERT-Squad.ipynb` notebook file.
2) Install MIGraphx to your system and follow the steps executing the python script `bert-squad-migraphx.py`.
# Steps
1) Install MIGraphX to your environment. Please follow the steps to build MIGraphX given at https://github.com/ROCmSoftwarePlatform/AMDMIGraphX
2) Install the requirements file
```
pip3 install -r requirements_migraphx.txt
```
3) Install `unzip` and fetch the uncased file (vocabulary):
```
apt-get install unzip
wget -q https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
unzip uncased_L-12_H-768_A-12.zip
```
4) Get BERT ONNX model (bertsquad-10.onnx):
```
wget https://github.com/onnx/models/raw/master/text/machine_comprehension/bert-squad/model/bertsquad-10.onnx
```
5) Run the inference, it will compile and run the model on three questions and small data provided in `inputs.json`:
```
python3 bert-squad-migraphx.py
```
## References
This example utilizes the following notebook :notebook: and applies it to MIGraphX:
https://github.com/onnx/models/blob/master/text/machine_comprehension/bert-squad/BERT-Squad.ipynb
import numpy as np
import json
import time
import os.path
from os import path
import sys
import tokenization
from run_onnx_squad import *
import migraphx
#######################################
input_file = 'inputs_amd.json'
with open(input_file) as json_file:
test_data = json.load(json_file)
print(json.dumps(test_data, indent=2))
# preprocess input
predict_file = 'inputs_amd.json'
# Use read_squad_examples method from run_onnx_squad to read the input file
eval_examples = read_squad_examples(input_file=predict_file)
max_seq_length = 256
doc_stride = 128
max_query_length = 64
batch_size = 1
n_best_size = 20
max_answer_length = 30
vocab_file = os.path.join('uncased_L-12_H-768_A-12', 'vocab.txt')
tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file,
do_lower_case=True)
# Use convert_examples_to_features method from run_onnx_squad to get parameters from the input
input_ids, input_mask, segment_ids, extra_data = convert_examples_to_features(
eval_examples, tokenizer, max_seq_length, doc_stride, max_query_length)
#######################################
# Compile
print("INFO: Parsing and compiling the model...")
model = migraphx.parse_onnx("bertsquad-10.onnx")
model.compile(migraphx.get_target("gpu"))
#model.print()
print(model.get_parameter_names())
print(model.get_parameter_shapes())
n = len(input_ids)
bs = batch_size
all_results = []
for idx in range(0, n):
item = eval_examples[idx]
print(item)
result = model.run({
"unique_ids_raw_output___9:0":
np.array([item.qas_id], dtype=np.int64),
"input_ids:0":
input_ids[idx:idx + bs],
"input_mask:0":
input_mask[idx:idx + bs],
"segment_ids:0":
segment_ids[idx:idx + bs]
})
in_batch = result[1].get_shape().lens()[0]
start_logits = [float(x) for x in result[1].tolist()]
end_logits = [float(x) for x in result[0].tolist()]
for i in range(0, in_batch):
unique_id = len(all_results)
all_results.append(
RawResult(unique_id=unique_id,
start_logits=start_logits,
end_logits=end_logits))
output_dir = 'predictions'
os.makedirs(output_dir, exist_ok=True)
output_prediction_file = os.path.join(output_dir, "predictions.json")
output_nbest_file = os.path.join(output_dir, "nbest_predictions.json")
write_predictions(eval_examples, extra_data, all_results, n_best_size,
max_answer_length, True, output_prediction_file,
output_nbest_file)
with open(output_prediction_file) as json_file:
test_data = json.load(json_file)
print(json.dumps(test_data, indent=2))
{
"version": "1.4",
"data": [
{
"paragraphs": [
{
"context": "In its early years, the new convention center failed to meet attendance and revenue expectations.[12] By 2002, many Silicon Valley businesses were choosing the much larger Moscone Center in San Francisco over the San Jose Convention Center due to the latter's limited space. A ballot measure to finance an expansion via a hotel tax failed to reach the required two-thirds majority to pass. In June 2005, Team San Jose built the South Hall, a $6.77 million, blue and white tent, adding 80,000 square feet (7,400 m2) of exhibit space",
"qas": [
{
"question": "where is the businesses choosing to go?",
"id": "1"
},
{
"question": "how may votes did the ballot measure need?",
"id": "2"
},
{
"question": "By what year many Silicon Valley businesses were choosing the Moscone Center?",
"id": "3"
}
]
}
],
"title": "Conference Center"
}
]
}
\ No newline at end of file
{
"data": [
{
"paragraphs": [
{
"context": "ROCm is the first open-source exascale-class platform for accelerated computing that’s also programming-language independent. It brings a philosophy of choice, minimalism and modular software development to GPU computing. You are free to choose or even develop tools and a language run time for your application. ROCm is built for scale, it supports multi-GPU computing and has a rich system run time with the critical features that large-scale application, compiler and language-run-time development requires. Since the ROCm ecosystem is comprised of open technologies: frameworks (Tensorflow / PyTorch), libraries (MIOpen / Blas / RCCL), programming model (HIP), inter-connect (OCD) and up streamed Linux® Kernel support – the platform is continually optimized for performance and extensibility.",
"qas": [
{
"question": "What is ROCm?",
"id": "1"
},
{
"question": "Which frameworks does ROCm support?",
"id": "2"
},
{
"question": "What is ROCm built for?",
"id": "3"
}
]
}
],
"title": "AMD ROCm"
}
]
}
\ No newline at end of file
tensorflow==1.14
onnxruntime
\ No newline at end of file
This diff is collapsed.
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import re
import unicodedata
import six
import tensorflow as tf
def validate_case_matches_checkpoint(do_lower_case, init_checkpoint):
"""Checks whether the casing config is consistent with the checkpoint name."""
# The casing has to be passed in by the user and there is no explicit check
# as to whether it matches the checkpoint. The casing information probably
# should have been stored in the bert_config.json file, but it's not, so
# we have to heuristically detect it to validate.
if not init_checkpoint:
return
m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", init_checkpoint)
if m is None:
return
model_name = m.group(1)
lower_models = [
"uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12",
"multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12"
]
cased_models = [
"cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16",
"multi_cased_L-12_H-768_A-12"
]
is_bad_config = False
if model_name in lower_models and not do_lower_case:
is_bad_config = True
actual_flag = "False"
case_name = "lowercased"
opposite_flag = "True"
if model_name in cased_models and do_lower_case:
is_bad_config = True
actual_flag = "True"
case_name = "cased"
opposite_flag = "False"
if is_bad_config:
raise ValueError(
"You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. "
"However, `%s` seems to be a %s model, so you "
"should pass in `--do_lower_case=%s` so that the fine-tuning matches "
"how the model was pre-training. If this error is wrong, please "
"just comment out this check." %
(actual_flag, init_checkpoint, model_name, case_name,
opposite_flag))
def convert_to_unicode(text):
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text.decode("utf-8", "ignore")
elif isinstance(text, unicode):
return text
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def printable_text(text):
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text
elif isinstance(text, unicode):
return text.encode("utf-8")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
index = 0
with tf.gfile.GFile(vocab_file, "r") as reader:
while True:
token = convert_to_unicode(reader.readline())
if not token:
break
token = token.strip()
vocab[token] = index
index += 1
return vocab
def convert_by_vocab(vocab, items):
"""Converts a sequence of [tokens|ids] using the vocab."""
output = []
for item in items:
output.append(vocab[item])
return output
def convert_tokens_to_ids(vocab, tokens):
return convert_by_vocab(vocab, tokens)
def convert_ids_to_tokens(inv_vocab, ids):
return convert_by_vocab(inv_vocab, ids)
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class FullTokenizer(object):
"""Runs end-to-end tokenziation."""
def __init__(self, vocab_file, do_lower_case=True):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
def tokenize(self, text):
split_tokens = []
for token in self.basic_tokenizer.tokenize(text):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def convert_tokens_to_ids(self, tokens):
return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class BasicTokenizer(object):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def __init__(self, do_lower_case=True):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self.do_lower_case = do_lower_case
def tokenize(self, text):
"""Tokenizes a piece of text."""
text = convert_to_unicode(text)
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case:
token = token.lower()
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xfffd or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class WordpieceTokenizer(object):
"""Runs WordPiece tokenziation."""
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""Tokenizes a piece of text into its word pieces.
This uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.
For example:
input = "unaffable"
output = ["un", "##aff", "##able"]
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer.
Returns:
A list of wordpiece tokens.
"""
text = convert_to_unicode(text)
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat in ("Cc", "Cf"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64)
or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment