Commit 27c8f6ef authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/AMDMIGraphX into mlir_gconv_msg

parents dbffeaff 6f1c947f
......@@ -34,16 +34,65 @@ namespace onnx {
struct parse_slice : op_parser<parse_slice>
{
std::vector<op_desc> operators() const { return {{"Slice"}}; }
struct slice_desc
{
op::slice op;
std::vector<instruction_ref> op_args;
std::vector<int64_t> steps;
std::vector<int64_t> raxes;
void always_insert(instruction_ref arg) { op_args.insert(op_args.begin(), arg); }
std::vector<int64_t> insert(instruction_ref arg)
{
std::vector<int64_t> result;
migraphx::argument arg_value = arg->eval();
if(arg_value.empty())
{
op_args.insert(op_args.begin(), arg);
}
else
{
arg_value.visit([&](auto s) { result.assign(s.begin(), s.end()); });
}
return result;
}
};
instruction_ref parse(const op_desc& /*opd*/,
const onnx_parser& parser,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
op::slice op;
auto sd = construct_slice_desc(parser, info, args);
auto ins = info.add_instruction(sd.op, sd.op_args);
if(not sd.raxes.empty())
{
ins = info.add_instruction(make_op("reverse", {{"axes", sd.raxes}}), ins);
}
// If any steps are other than default 1, add a "steps" op
if(std::any_of(sd.steps.begin(), sd.steps.end(), [](auto s) { return std::abs(s) != 1; }))
{
std::vector<int64_t> nsteps;
std::transform(sd.steps.begin(),
sd.steps.end(),
std::back_inserter(nsteps),
[](auto s) { return std::abs(s); });
return ins = info.add_instruction(
make_op("step", {{"axes", sd.op.axes}, {"steps", nsteps}}), ins);
}
else
return ins;
}
std::vector<int64_t> steps;
slice_desc construct_slice_desc(const onnx_parser& parser,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
{
slice_desc sd;
// slice can have up to 5 inputs, we first check the 5th one
// to decide whether MIGRAPHX can handle this slice.
......@@ -51,89 +100,73 @@ struct parse_slice : op_parser<parse_slice>
{
migraphx::argument step_arg = args.back()->eval();
check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
step_arg.visit([&](auto s) { sd.steps.assign(s.begin(), s.end()); });
}
if(args.size() >= 4)
{
migraphx::argument axes_arg = args.at(3)->eval();
check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
sd.op.axes = sd.insert(args.at(3));
}
else if(contains(info.attributes, "axes"))
{
literal s = parser.parse_value(info.attributes.at("axes"));
s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.axes)); });
}
if(args.size() >= 3)
{
migraphx::argument end_arg = args.at(2)->eval();
check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
sd.op.ends = sd.insert(args.at(2));
}
else if(contains(info.attributes, "ends"))
{
literal s = parser.parse_value(info.attributes.at("ends"));
s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.ends)); });
}
if(args.size() >= 2)
{
migraphx::argument start_arg = args.at(1)->eval();
check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
sd.op.starts = sd.insert(args.at(1));
}
else if(contains(info.attributes, "starts"))
{
literal s = parser.parse_value(info.attributes.at("starts"));
s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.starts)); });
}
// data input argument
sd.always_insert(args.at(0));
// If axes arg is not given, the default is all of them.
if(op.axes.empty())
if(sd.op.axes.empty() and sd.op_args.size() < 3)
{
std::vector<int64_t> axes(args[0]->get_shape().ndim());
std::iota(axes.begin(), axes.end(), int64_t{0});
op.axes = axes;
sd.op.axes = axes;
}
std::vector<int64_t> raxes;
if(not sd.steps.empty())
{
if(sd.op.starts.empty() or sd.op.ends.empty())
MIGRAPHX_THROW("PARSE_SLICE: steps and variable starts and ends is not supported");
if(sd.op.axes.empty())
MIGRAPHX_THROW("PARSE_SLICE: steps and variable axes is not supported");
}
assert(steps.empty() or steps.size() == op.axes.size());
assert(op.axes.size() == op.starts.size());
assert(op.axes.size() == op.ends.size());
assert(sd.steps.empty() or sd.steps.size() == sd.op.axes.size());
// If any axes have negative step, prepare to add a "reverse" op
for(auto i : range(steps.size()))
for(auto i : range(sd.steps.size()))
{
if(steps[i] >= 0)
if(sd.steps[i] >= 0)
continue;
op.starts[i] += 1;
if(op.starts[i] == 0)
op.starts[i] = INT_MAX;
op.ends[i] += 1;
raxes.push_back(op.axes[i]);
std::swap(op.starts[i], op.ends[i]);
}
auto ins = info.add_instruction(op, args[0]);
if(not raxes.empty())
{
ins = info.add_instruction(make_op("reverse", {{"axes", raxes}}), ins);
sd.op.starts[i] += 1;
if(sd.op.starts[i] == 0)
sd.op.starts[i] = INT_MAX;
sd.op.ends[i] += 1;
sd.raxes.push_back(sd.op.axes[i]);
std::swap(sd.op.starts[i], sd.op.ends[i]);
}
// If any steps are other than default 1, add a "steps" op
if(std::any_of(steps.begin(), steps.end(), [](auto s) { return std::abs(s) != 1; }))
{
std::vector<int64_t> nsteps;
std::transform(steps.begin(), steps.end(), std::back_inserter(nsteps), [](auto s) {
return std::abs(s);
});
return ins = info.add_instruction(
make_op("step", {{"axes", op.axes}, {"steps", nsteps}}), ins);
}
else
return ins;
return sd;
}
};
......
......@@ -223,7 +223,7 @@ void program::compile(const std::vector<target>& targets, std::vector<compile_op
// Gather all the target roots
std::unordered_multimap<std::size_t, module_ref> roots;
auto mods = this->get_modules();
for(auto* mod : mods)
for(const auto* mod : mods)
{
for(const auto& ins : *mod)
{
......@@ -548,7 +548,7 @@ std::vector<argument> program::eval(parameter_map params, execution_environment
ins_out[x] = ss.str();
});
ret = generic_eval(*this, contexts, std::move(params), [&](instruction_ref ins, auto f) {
auto& ctx = contexts[ins->get_target_id()];
const auto& ctx = contexts[ins->get_target_id()];
ctx.finish();
std::cout << "Run instruction: " << ins_out.at(ins) << std::endl;
timer t{};
......@@ -728,7 +728,7 @@ static void mod_from_val(module_ref mod,
std::back_inserter(module_inputs),
[&](const value& i) { return map_mods.at(i.to<std::string>()); });
for(auto& smod : module_inputs)
for(const auto& smod : module_inputs)
{
mod_from_val(smod, v, instructions, map_mods);
}
......@@ -1186,7 +1186,7 @@ void program::remove_unused_modules()
std::vector<module*> unused;
generic_get_unused_modules(
impl->modules, generic_get_modules(this->get_main_module()), std::back_inserter(unused));
for(auto* m : unused)
for(const auto* m : unused)
this->remove_module(m->name());
}
......
......@@ -24,6 +24,7 @@
option(MIGRAPHX_ENABLE_PYTHON "Enable python bindings" ON)
add_library(migraphx_py py_loader.cpp)
migraphx_generate_export_header(migraphx_py)
target_include_directories(migraphx_py PRIVATE include)
target_link_libraries(migraphx_py PUBLIC migraphx)
rocm_install_targets(TARGETS migraphx_py INCLUDE include)
......
......@@ -26,11 +26,12 @@
#include <migraphx/config.hpp>
#include <migraphx/program.hpp>
#include <migraphx/py/export.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
program load_py(const std::string& filename);
MIGRAPHX_PY_EXPORT program load_py(const std::string& filename);
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -64,7 +64,7 @@ static dynamic_loader py_lib()
return lib;
}
program load_py(const std::string& filename)
MIGRAPHX_PY_EXPORT program load_py(const std::string& filename)
{
static auto f = py_lib().get_function<program(const std::string&)>("migraphx_load_py");
return f(filename);
......
......@@ -28,6 +28,7 @@
#include <migraphx/tune_axis.hpp>
#include <migraphx/program.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/common.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -61,13 +62,10 @@ void apply_quantizelinear(module& m, instruction_ref ins)
max_quant = qt.max();
min_quant = qt.min();
});
auto s = add_zero_point->get_shape();
std::vector<int> min_data(s.elements(), min_quant);
std::vector<int> max_data(s.elements(), max_quant);
auto min_arg = m.add_literal(literal(s, min_data));
auto max_arg = m.add_literal(literal(s, max_data));
auto saturate = m.insert_instruction(ins, make_op("clip"), add_zero_point, min_arg, max_arg);
auto s = add_zero_point->get_shape();
auto min_arg = m.add_literal(literal{shape{s.type()}, {min_quant}});
auto max_arg = m.add_literal(literal{shape{s.type()}, {max_quant}});
auto saturate = insert_common_op(m, ins, make_op("clip"), {add_zero_point, min_arg, max_arg});
m.replace_instruction(
ins, make_op("convert", {{"target_type", ins->get_shape().type()}}), saturate);
}
......
......@@ -1095,8 +1095,9 @@ MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
};
};
auto dots = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("dot"));
auto qdots = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("quant_dot"));
auto convs = std::count_if(ins->outputs().begin(), ins->outputs().end(), pred("convolution"));
return (dots >= 2 or convs >= 2);
return (dots >= 2 or convs >= 2 or qdots >= 2);
}
struct find_conv_dot_horiz_fusion
......@@ -1110,7 +1111,7 @@ struct find_conv_dot_horiz_fusion
auto pred = [](auto i, auto j) {
if(i->get_operator() != j->get_operator())
return false;
if(not contains({"dot", "convolution"}, i->name()))
if(not contains({"quant_dot", "dot", "convolution"}, i->name()))
return true;
auto x = i->inputs()[1]->get_shape().lens();
auto y = j->inputs()[1]->get_shape().lens();
......@@ -1118,7 +1119,7 @@ struct find_conv_dot_horiz_fusion
return false;
// Check that non-axes match
int axis = 1;
if(i->name() == "dot")
if(i->name() == "dot" or i->name() == "quant_dot")
{
axis = x.size() - 1;
}
......@@ -1129,7 +1130,7 @@ struct find_conv_dot_horiz_fusion
if(std::distance(start, last) < 2)
return;
auto&& name = (*start)->name();
if(not contains({"dot", "convolution"}, name))
if(not contains({"quant_dot", "dot", "convolution"}, name))
return;
auto op = (*start)->get_operator();
int group = 1;
......@@ -1144,7 +1145,7 @@ struct find_conv_dot_horiz_fusion
start, last, std::back_inserter(args), [&](auto x) { return x->inputs().at(1); });
int axis = 1;
int concat_axis = 0;
if(name == "dot")
if(name == "dot" or name == "quant_dot")
{
axis = int(args.front()->get_shape().lens().size() - 1);
concat_axis = axis;
......
......@@ -48,6 +48,7 @@ struct sqlite_impl
template <class F>
void exec(const char* sql, F f)
{
// cppcheck-suppress constParameterPointer
auto callback = [](void* obj, auto... xs) -> int {
try
{
......
......@@ -43,7 +43,11 @@ struct dnnl_gemm : dnnl_extend_op<dnnl_gemm, dnnl::matmul, op::dot>
MIGRAPHX_DNNL_PREFIX(ARG_BIAS)};
}
void required(const check_shapes& cs) const { cs.not_broadcasted(); }
template <class T>
void required(const check_shapes<T>& cs) const
{
cs.not_broadcasted();
}
dnnl::matmul::desc get_desc(const std::unordered_map<int, dnnl::memory::desc>& m) const
{
......
......@@ -400,7 +400,11 @@ struct dnnl_extend_op : dnnl_op<Derived, Primitive>
}
// dnnl has some issues with non-packed inputs
void required(const check_shapes& cs) const { cs.packed_or_broadcasted(); }
template <class T>
void required(const check_shapes<T>& cs) const
{
cs.packed_or_broadcasted();
}
std::string name() const { return "dnnl::" + op.name(); }
shape compute_shape(std::vector<shape> inputs) const
......
......@@ -61,7 +61,7 @@ namespace cpu {
std::string target::name() const { return "cpu"; }
// cppcheck-suppress constParameter
// cppcheck-suppress constParameterReference
std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_options&) const
{
auto& ctx = any_cast<context>(gctx);
......
......@@ -331,7 +331,7 @@ static std::vector<std::string> get_op_names(const module& m)
{
if(starts_with(ins.name(), "@"))
continue;
if(ins.name() == "multibroadcast")
if(contains({"multibroadcast", "contiguous"}, ins.name()))
continue;
if(ins.name() == "pointwise")
{
......
......@@ -41,7 +41,7 @@ struct index
__device__ index_int nglobal() const { return blockDim.x * gridDim.x; } // NOLINT
__device__ index_int nlocal() const { return blockDim.x; } // NOLINT
__device__ index_int nlocal() const { return blockDim.x; } // NOLINT
template <class F>
__device__ void global_stride(index_int n, F f) const
......@@ -81,6 +81,12 @@ inline auto launch(hipStream_t stream, index_int global, index_int local)
dim3 nthreads(local);
// cppcheck-suppress UseDeviceLaunch
hipLaunchKernelGGL((launcher<f_type>), nblocks, nthreads, 0, stream, f);
hipError_t kernel_launch_status = hipGetLastError();
if(kernel_launch_status != hipSuccess)
{
MIGRAPHX_THROW("MIGraphX device kernel failed to launch with error: " +
std::string(hipGetErrorString(kernel_launch_status)));
}
};
}
......
......@@ -124,7 +124,7 @@ void nary_broadcast_vec_impl(
buffer[i] = binput.data()[i];
}
__syncthreads();
auto* bp = as_pointer(buffer);
const auto* bp = as_pointer(buffer);
// Process the data
for(size_t i = idx.global; i < nelements; i += nglobal)
{
......@@ -219,7 +219,7 @@ void nary_double_broadcast_vec_impl(
buffer[i + bdim_vec_len] = binput2.data()[i];
}
__syncthreads();
auto* bp = as_pointer(buffer);
const auto* bp = as_pointer(buffer);
// Process the data
for(size_t i = idx.global; i < nelements; i += nglobal)
{
......
......@@ -72,12 +72,12 @@ struct hip_heap_vector
index_int l = 2 * index + 1;
index_int r = 2 * index + 2;
if(l < n && compare(data[data_index(l)], data[data_index(index)]))
if(l < n and compare(data[data_index(l)], data[data_index(index)]))
{
index = l;
}
if(r < n && compare(data[data_index(r)], data[data_index(index)]))
if(r < n and compare(data[data_index(r)], data[data_index(index)]))
{
index = r;
if(compare(data[data_index(l)], data[data_index(r)]))
......
......@@ -31,20 +31,6 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
template <class HipDeviceProp>
std::string get_arch_name(rank<0>, const HipDeviceProp& props)
{
return "gfx" + std::to_string(props.gcnArch);
}
template <class HipDeviceProp>
auto get_arch_name(rank<1>, const HipDeviceProp& props) -> decltype(std::string(props.gcnArchName))
{
return std::string(props.gcnArchName);
}
std::string get_arch_name(const hipDeviceProp_t& props) { return get_arch_name(rank<1>{}, props); }
int get_device_id()
{
int device;
......@@ -60,7 +46,7 @@ std::string get_device_name()
auto status = hipGetDeviceProperties(&props, get_device_id());
if(status != hipSuccess)
MIGRAPHX_THROW("Failed to get device properties");
return get_arch_name(props);
return props.gcnArchName;
}
} // namespace gpu
......
......@@ -86,7 +86,7 @@ struct mlir_op
size_t param_cnt = 0;
std::vector<std::string> names = mod->get_parameter_names();
std::sort(names.begin(), names.end());
for(std::string param_name : names)
for(const std::string& param_name : names)
{
ins_shapes[mod->get_parameter(param_name)] = inputs[param_cnt++];
}
......@@ -214,42 +214,47 @@ struct find_mlir_op
return false;
}
const std::initializer_list<std::string> any_type_ops = {"@literal", "@param", "@return"};
const std::initializer_list<std::string> no_bool_ops = {"convolution",
"quant_convolution",
"dot",
"quant_dot",
"add",
"clip",
"relu",
"sub",
"mul",
"div",
"pow",
"where",
"quantizelinear",
"dequantizelinear",
"abs",
"neg"};
const std::initializer_list<std::string> fp_only_ops = {"ceil",
"erf",
"exp",
"floor",
"log",
"recip",
"rsqrt",
"sigmoid"
"softmax",
"tanh"};
const std::initializer_list<std::string> no_bool_ops = {
"convolution",
"quant_convolution",
"dot",
"quant_dot",
"add",
"clip",
"relu",
"sub",
"mul",
"div",
"pow",
"where",
"quantizelinear",
"dequantizelinear",
"abs",
"neg",
};
const std::initializer_list<std::string> fp_only_ops = {
"ceil",
"erf",
"exp",
"floor",
"log",
"recip",
"rsqrt",
// There are bugs in MLIR right now for models using sigmoid so disable it for now
// "sigmoid",
"softmax",
"tanh",
};
bool is_float = contains({type_t::float_type, type_t::half_type}, result_type);
if(contains(any_type_ops, name))
return true;
if(result_type != type_t::bool_type && contains(no_bool_ops, name))
if(result_type != type_t::bool_type and contains(no_bool_ops, name))
return true;
if(is_float && contains(fp_only_ops, name))
if(is_float and contains(fp_only_ops, name))
return true;
// Only conversions between floating types are known to be unambigiously
// supported.
if(is_float && name == "convert")
if(is_float and name == "convert")
{
return std::all_of(i.inputs().begin(), i.inputs().end(), [](const auto& arg) {
return contains({type_t::float_type, type_t::half_type}, arg->get_shape().type());
......
......@@ -46,13 +46,7 @@ using hip_event_ptr = MIGRAPHX_MANAGE_PTR(hipEvent_t, hipEventDestroy);
struct hip_device
{
hip_device()
{
device_props.gcnArchName[0] = '\0';
device_props.gcnArch = 0;
device_props.multiProcessorCount = 0;
add_stream();
}
hip_device() : device_props{} { add_stream(); }
hip_device(std::size_t id, std::size_t n) : device_id(id)
{
......@@ -171,7 +165,7 @@ struct hip_device
std::size_t stream_id() const { return current_stream; }
std::string get_device_name() const { return get_arch_name(device_props); }
std::string get_device_name() const { return device_props.gcnArchName; }
std::string get_gfx_name() const { return trim(split_string(get_device_name(), ':').front()); }
......
......@@ -33,8 +33,6 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
MIGRAPHX_GPU_EXPORT std::string get_arch_name(const hipDeviceProp_t& props);
MIGRAPHX_GPU_EXPORT std::string get_device_name();
MIGRAPHX_GPU_EXPORT int get_device_id();
......
......@@ -92,7 +92,7 @@ struct hip_sync_stream
return inputs.front();
}
argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
argument compute(const context& ctx, const shape&, const std::vector<argument>& args) const
{
gpu_sync(ctx);
if(args.empty())
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment