Commit 27c8f6ef authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/AMDMIGraphX into mlir_gconv_msg

parents dbffeaff 6f1c947f
...@@ -338,11 +338,22 @@ struct argument_parser ...@@ -338,11 +338,22 @@ struct argument_parser
MIGRAPHX_DRIVER_STATIC auto file_exist() MIGRAPHX_DRIVER_STATIC auto file_exist()
{ {
return validate([](auto&, auto&, auto& params) { return validate([](auto&, auto&, const auto& params) {
if(params.empty()) if(params.empty())
throw std::runtime_error("No argument passed."); throw std::runtime_error("No argument passed.");
if(not fs::exists(params.back())) if(not fs::exists(params.back()))
throw std::runtime_error("Path does not exists: " + params.back()); throw std::runtime_error("Path does not exist: " + params.back());
});
}
MIGRAPHX_DRIVER_STATIC auto matches(const std::unordered_set<std::string>& names)
{
return validate([=](auto&, auto&, const auto& params) {
auto invalid_param = std::find_if(
params.begin(), params.end(), [&](const auto& p) { return names.count(p) == 0; });
if(invalid_param != params.end())
throw std::runtime_error("Invalid argument: " + *invalid_param +
". Valid arguments are {" + to_string_range(names) + "}");
}); });
} }
...@@ -570,8 +581,7 @@ struct argument_parser ...@@ -570,8 +581,7 @@ struct argument_parser
continue; continue;
if(flag[0] != '-') if(flag[0] != '-')
continue; continue;
auto d = std::ptrdiff_t d = levenshtein_distance(flag, input);
levenshtein_distance(flag.begin(), flag.end(), input.begin(), input.end());
if(d < result.distance) if(d < result.distance)
result = result_t{&arg, flag, input, d}; result = result_t{&arg, flag, input, d};
} }
......
...@@ -82,6 +82,7 @@ struct loader ...@@ -82,6 +82,7 @@ struct loader
{"--model"}, {"--model"},
ap.help("Load model"), ap.help("Load model"),
ap.type("resnet50|inceptionv3|alexnet"), ap.type("resnet50|inceptionv3|alexnet"),
ap.matches({"resnet50", "inceptionv3", "alexnet"}),
ap.group("input")); ap.group("input"));
ap(file_type, {"--onnx"}, ap.help("Load as onnx"), ap.set_value("onnx")); ap(file_type, {"--onnx"}, ap.help("Load as onnx"), ap.set_value("onnx"));
ap(file_type, {"--tf"}, ap.help("Load as tensorflow"), ap.set_value("tf")); ap(file_type, {"--tf"}, ap.help("Load as tensorflow"), ap.set_value("tf"));
...@@ -769,7 +770,7 @@ struct main_command ...@@ -769,7 +770,7 @@ struct main_command
{ {
std::cout << "'" << color::fg_yellow << wrong_commands.front() << color::reset std::cout << "'" << color::fg_yellow << wrong_commands.front() << color::reset
<< "' is not a valid command." << std::endl; << "' is not a valid command." << std::endl;
std::cout << get_command_help("Available commands:") << std::endl; std::cout << get_command_help("Available commands:");
} }
else else
{ {
......
...@@ -35,6 +35,8 @@ ...@@ -35,6 +35,8 @@
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_ELIMINATE_CONTIGUOUS)
static bool try_compute_shape(instruction_ref ins, static bool try_compute_shape(instruction_ref ins,
const std::vector<shape>& inputs, const std::vector<shape>& inputs,
const std::vector<module_ref>& mods) const std::vector<module_ref>& mods)
...@@ -78,14 +80,26 @@ static bool try_compute_shape(instruction_ref ins, ...@@ -78,14 +80,26 @@ static bool try_compute_shape(instruction_ref ins,
return (arg == ins) ? new_shape : arg->get_shape(); return (arg == ins) ? new_shape : arg->get_shape();
}); });
if(not try_compute_shape(output, input_shapes, mods)) if(not try_compute_shape(output, input_shapes, output->module_inputs()))
{ {
return false; return false;
} }
} }
} }
catch(const std::exception& e)
{
if(enabled(MIGRAPHX_TRACE_ELIMINATE_CONTIGUOUS{}))
{
std::cout << "Exception: " << e.what() << std::endl;
}
return false;
}
catch(...) catch(...)
{ {
if(enabled(MIGRAPHX_TRACE_ELIMINATE_CONTIGUOUS{}))
{
std::cout << "Unknown exception" << std::endl;
}
return false; return false;
} }
...@@ -127,6 +141,11 @@ static void remove_contiguous(const std::string& op_name, module& m, F f) ...@@ -127,6 +141,11 @@ static void remove_contiguous(const std::string& op_name, module& m, F f)
{ {
if(arg->name() != op_name) if(arg->name() != op_name)
continue; continue;
if(enabled(MIGRAPHX_TRACE_ELIMINATE_CONTIGUOUS{}))
{
std::cout << "eliminate_contiguous: ";
m.debug_print(ins);
}
auto prev = arg->inputs().front(); auto prev = arg->inputs().front();
replace(new_args, arg, prev); replace(new_args, arg, prev);
if(try_compute_shape(ins, new_args, mod_args)) if(try_compute_shape(ins, new_args, mod_args))
......
...@@ -41,7 +41,7 @@ static literal get_scalar(instruction_ref ins) ...@@ -41,7 +41,7 @@ static literal get_scalar(instruction_ref ins)
if(ins->name() == "contiguous") if(ins->name() == "contiguous")
return get_scalar(ins->inputs().front()); return get_scalar(ins->inputs().front());
const auto& s = ins->get_shape(); const auto& s = ins->get_shape();
if(s.elements() != 1 && not(s.scalar())) if(s.elements() != 1 and not(s.scalar()))
return {}; return {};
if(not ins->can_eval()) if(not ins->can_eval())
return {}; return {};
......
...@@ -52,7 +52,7 @@ struct fused_reduce ...@@ -52,7 +52,7 @@ struct fused_reduce
{ {
if(mods.size() != 1) if(mods.size() != 1)
MIGRAPHX_THROW("should have one submodule."); MIGRAPHX_THROW("should have one submodule.");
auto* sm = mods.front(); const auto* sm = mods.front();
if(sm->get_output_shapes().size() != 1) if(sm->get_output_shapes().size() != 1)
MIGRAPHX_THROW("Only one output supported"); MIGRAPHX_THROW("Only one output supported");
auto names = sm->get_parameter_names(); auto names = sm->get_parameter_names();
...@@ -143,7 +143,7 @@ insert_module_in_submodule(module_ref sm, ...@@ -143,7 +143,7 @@ insert_module_in_submodule(module_ref sm,
} }
static std::vector<instruction_ref> static std::vector<instruction_ref>
find_inputs(module_ref sm, find_inputs(const_module_ref sm,
const module& parent, const module& parent,
const std::unordered_map<instruction_ref, instruction_ref>& map_ins) const std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{ {
......
...@@ -26,6 +26,8 @@ ...@@ -26,6 +26,8 @@
#include <algorithm> #include <algorithm>
#include <numeric> #include <numeric>
#include <string>
#include <vector>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
namespace migraphx { namespace migraphx {
...@@ -90,6 +92,42 @@ levenshtein_distance(Iterator1 first1, Iterator1 last1, Iterator2 first2, Iterat ...@@ -90,6 +92,42 @@ levenshtein_distance(Iterator1 first1, Iterator1 last1, Iterator2 first2, Iterat
return std::ptrdiff_t{1} + std::min({x1, x2, x3}); return std::ptrdiff_t{1} + std::min({x1, x2, x3});
} }
inline size_t levenshtein_distance(const std::string& s1, const std::string& s2)
{
const size_t l1 = s1.length();
const size_t l2 = s2.length();
if(l1 < l2)
levenshtein_distance(s2, s1);
std::vector<size_t> d(l2 + 1);
std::iota(d.begin(), d.end(), 0);
for(size_t i = 1; i <= l1; i++)
{
size_t prev_cost = d[0];
d[0] = i;
for(size_t j = 1; j <= l2; j++)
{
if(s1[i - 1] == s2[j - 1])
{
d[j] = prev_cost;
}
else
{
size_t cost_insert_or_delete = std::min(d[j - 1], d[j]);
size_t cost_substitute = prev_cost;
prev_cost = d[j];
d[j] = std::min(cost_substitute, cost_insert_or_delete) + 1;
}
}
}
return d[l2];
}
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx } // namespace migraphx
......
/* /*
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
...@@ -34,21 +34,37 @@ ...@@ -34,21 +34,37 @@
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
// Check that deduced type is incrementable, dereferencable, and comparable
template <class, class = void>
struct is_iterator
{
};
template <class T>
struct is_iterator<T,
std::void_t<decltype(++std::declval<T&>()),
decltype(*std::declval<T&>()),
decltype(std::declval<T&>() == std::declval<T&>())>> : std::true_type
{
};
template <class Iterator>
struct check_shapes struct check_shapes
{ {
const shape* begin; static_assert(is_iterator<Iterator>{}, "CHECK_SHAPES: Deduced type must be an iterator");
const shape* end; Iterator begin;
Iterator end;
std::string name; std::string name;
bool dynamic_allowed; bool dynamic_allowed;
check_shapes(const shape* b, const shape* e, const std::string& n, const bool d = false) check_shapes(Iterator b, Iterator e, const std::string& n, const bool d = false)
: begin(b), end(e), name(n), dynamic_allowed(d) : begin(b), end(e), name(n), dynamic_allowed(d)
{ {
check_dynamic(); check_dynamic();
} }
template <class Op> template <class Op>
check_shapes(const shape* b, const shape* e, const Op& op, const bool d = false) check_shapes(Iterator b, Iterator e, const Op& op, const bool d = false)
: begin(b), end(e), name(op.name()), dynamic_allowed(d) : begin(b), end(e), name(op.name()), dynamic_allowed(d)
{ {
check_dynamic(); check_dynamic();
...@@ -56,7 +72,7 @@ struct check_shapes ...@@ -56,7 +72,7 @@ struct check_shapes
template <class Op> template <class Op>
check_shapes(const std::vector<shape>& s, const Op& op, const bool d = false) check_shapes(const std::vector<shape>& s, const Op& op, const bool d = false)
: begin(s.data()), end(s.data() + s.size()), name(op.name()), dynamic_allowed(d) : begin(s.begin()), end(s.end()), name(op.name()), dynamic_allowed(d)
{ {
check_dynamic(); check_dynamic();
} }
...@@ -81,8 +97,6 @@ struct check_shapes ...@@ -81,8 +97,6 @@ struct check_shapes
{ {
if(begin == end) if(begin == end)
return 0; return 0;
assert(begin != nullptr);
assert(end != nullptr);
return end - begin; return end - begin;
} }
...@@ -131,8 +145,6 @@ struct check_shapes ...@@ -131,8 +145,6 @@ struct check_shapes
*/ */
const check_shapes& only_dims(std::size_t n) const const check_shapes& only_dims(std::size_t n) const
{ {
assert(begin != nullptr);
assert(end != nullptr);
if(begin != end) if(begin != end)
{ {
if(begin->max_lens().size() != n) if(begin->max_lens().size() != n)
...@@ -148,8 +160,6 @@ struct check_shapes ...@@ -148,8 +160,6 @@ struct check_shapes
*/ */
const check_shapes& max_ndims(std::size_t n) const const check_shapes& max_ndims(std::size_t n) const
{ {
assert(begin != nullptr);
assert(end != nullptr);
if(begin != end) if(begin != end)
{ {
if(begin->max_lens().size() > n) if(begin->max_lens().size() > n)
...@@ -166,8 +176,6 @@ struct check_shapes ...@@ -166,8 +176,6 @@ struct check_shapes
*/ */
const check_shapes& min_ndims(std::size_t n) const const check_shapes& min_ndims(std::size_t n) const
{ {
assert(begin != nullptr);
assert(end != nullptr);
if(begin != end) if(begin != end)
{ {
if(begin->max_lens().size() < n) if(begin->max_lens().size() < n)
...@@ -330,8 +338,6 @@ struct check_shapes ...@@ -330,8 +338,6 @@ struct check_shapes
{ {
if(begin == end) if(begin == end)
return true; return true;
assert(begin != nullptr);
assert(end != nullptr);
auto&& key = f(*begin); auto&& key = f(*begin);
return this->all_of([&](const shape& s) { return f(s) == key; }); return this->all_of([&](const shape& s) { return f(s) == key; });
} }
...@@ -341,8 +347,6 @@ struct check_shapes ...@@ -341,8 +347,6 @@ struct check_shapes
{ {
if(begin == end) if(begin == end)
return true; return true;
assert(begin != nullptr);
assert(end != nullptr);
return std::all_of(begin, end, p); return std::all_of(begin, end, p);
} }
...@@ -351,17 +355,13 @@ struct check_shapes ...@@ -351,17 +355,13 @@ struct check_shapes
{ {
if(begin == end) if(begin == end)
return false; return false;
assert(begin != nullptr);
assert(end != nullptr);
return std::any_of(begin, end, p); return std::any_of(begin, end, p);
} }
const shape* get(long i) const Iterator get(long i) const
{ {
if(i >= size()) if(i >= size())
MIGRAPHX_THROW(prefix() + "Accessing shape out of bounds"); MIGRAPHX_THROW(prefix() + "Accessing shape out of bounds");
assert(begin != nullptr);
assert(end != nullptr);
if(i < 0) if(i < 0)
return end - i; return end - i;
return begin + i; return begin + i;
...@@ -394,6 +394,11 @@ struct check_shapes ...@@ -394,6 +394,11 @@ struct check_shapes
} }
}; };
// Deduction guide for std::vector constructor
template <class Op>
check_shapes(const std::vector<shape>&, const Op&, bool d = false)
-> check_shapes<std::vector<shape>::const_iterator>;
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx } // namespace migraphx
......
/* /*
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
...@@ -28,6 +28,7 @@ ...@@ -28,6 +28,7 @@
#include <migraphx/shape.hpp> #include <migraphx/shape.hpp>
#include <cstring> #include <cstring>
#include <vector> #include <vector>
#include <migraphx/op/normalize_attribute.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -42,6 +43,36 @@ struct select_dependent_type ...@@ -42,6 +43,36 @@ struct select_dependent_type
template <class T, class... Ts> template <class T, class... Ts>
using dependent_type = typename select_dependent_type<T, Ts...>::type; using dependent_type = typename select_dependent_type<T, Ts...>::type;
/**
* Used to normalize variable input axes at model runtime.
* Example: the axes inputs of the slice operator.
*
* \param axes the axes to normalize
* \param input_shape shape of the input tensor
* \param attr_val the normalize_axes attributes from the operator
* \param prefix error message prefix
*/
std::vector<int64_t> normalize_axes(const std::vector<int64_t>& axes,
const shape& input_shape,
const value& attr_val,
const std::string& prefix = "");
/**
* Used to normalize variable input axes at model runtime.
* Example: the starts and ends inputs of the slice operator.
*
* \param indices the indices to normalize
* \param axes which axes the indices apply over
* \param input_shape shape of the input tensor
* \param attr_val the normalize_axes attributes from the operator
* \param prefix error message prefix
*/
std::vector<int64_t> normalize_indices(const std::vector<int64_t>& indices,
const std::vector<int64_t>& axes,
const shape& input_shape,
const value& attr_val,
const std::string& prefix = "");
MIGRAPHX_EXPORT MIGRAPHX_EXPORT
bool normalize_attributes(operation& op, const shape& input_shape); bool normalize_attributes(operation& op, const shape& input_shape);
......
...@@ -82,7 +82,7 @@ struct convolution ...@@ -82,7 +82,7 @@ struct convolution
const auto input_ndim = inputs[0].ndim(); const auto input_ndim = inputs[0].ndim();
const auto padding_size = padding.size(); const auto padding_size = padding.size();
if(input_ndim != padding_size / 2 + 2 && input_ndim != padding_size + 2) if(input_ndim != padding_size / 2 + 2 and input_ndim != padding_size + 2)
{ {
MIGRAPHX_THROW("CONVOLUTION: input and attribute size mismatch!"); MIGRAPHX_THROW("CONVOLUTION: input and attribute size mismatch!");
} }
......
...@@ -71,7 +71,7 @@ struct if_op ...@@ -71,7 +71,7 @@ struct if_op
std::unordered_map<std::string, argument> params; std::unordered_map<std::string, argument> params;
std::set<std::string> pnames; std::set<std::string> pnames;
for(const auto& smod : mods) for(const_module_ref smod : mods)
{ {
auto names = smod->get_parameter_names(); auto names = smod->get_parameter_names();
pnames.insert(names.begin(), names.end()); pnames.insert(names.begin(), names.end());
......
...@@ -59,9 +59,9 @@ struct loop ...@@ -59,9 +59,9 @@ struct loop
MIGRAPHX_THROW("LOOP: operator should have one submodule."); MIGRAPHX_THROW("LOOP: operator should have one submodule.");
} }
const auto& mod = mods.front(); const_module_ref mod = mods.front();
auto mod_out_shapes = mod->get_output_shapes(); auto mod_out_shapes = mod->get_output_shapes();
auto dep_param_num = inputs.size() - 2; auto dep_param_num = inputs.size() - 2;
// first item of the mod output shapes is condition used in loop, // first item of the mod output shapes is condition used in loop,
// which is not needed to compute output shape // which is not needed to compute output shape
......
...@@ -27,19 +27,34 @@ ...@@ -27,19 +27,34 @@
#include <migraphx/check_shapes.hpp> #include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp> #include <migraphx/argument.hpp>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/value.hpp> #include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/op/normalize_attribute.hpp> #include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/normalize_attributes.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace op { namespace op {
/**
* Slice operator that accepts variable axes, starts and ends.
*
* Attributes:
* axes: constant axes to slice over (optional)
* starts: constant slice starting indices (optional)
* ends: constant slice ending indices (optional)
*
* Parameters:
* data: the input tensor to slice (dynamic or static shape)
* input_starts: starting indicies of slice (optional, static shape)
* input_ends: ending indicies of slice (optional, static shape)
* input_axes: axes to slice over (optional, static shape)
*/
struct slice struct slice
{ {
std::vector<int64_t> axes; std::vector<int64_t> axes{};
std::vector<int64_t> starts; std::vector<int64_t> starts{};
std::vector<int64_t> ends; std::vector<int64_t> ends{};
template <class Self, class F> template <class Self, class F>
static auto reflect(Self& self, F f) static auto reflect(Self& self, F f)
...@@ -48,8 +63,8 @@ struct slice ...@@ -48,8 +63,8 @@ struct slice
} }
/** /**
* Ensure that attribute vectors axes, starts, and ends are all the same size and values are in * Ensure that attribute vectors axes, starts, and ends are all the same size and values are
* limits. * within limits.
*/ */
value attributes() const value attributes() const
{ {
...@@ -70,6 +85,90 @@ struct slice ...@@ -70,6 +85,90 @@ struct slice
std::string name() const { return "slice"; } std::string name() const { return "slice"; }
/**
* Computes the slice output shape dimensions for given starts, ends,and axes.
* Templated to also handle tensor views.
* Possibily different type between [in_starts, in_ends] and [in_axes] if in_axes is this
* object's axes attribute. Assumes in_starts and in_ends are normalized; in_axes are valid.
*/
template <class A, class B>
std::vector<std::size_t>
lens_calc(const std::vector<std::size_t>& lengths, A in_starts, A in_ends, B in_axes) const
{
auto new_lens = lengths;
for(std::size_t i = 0; i < in_axes.size(); ++i)
{
auto axis = in_axes[i];
new_lens[axis] = in_ends[i] - in_starts[i];
}
return new_lens;
}
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this, true}.has(1, 3, 4);
auto input_shape = inputs[0];
if(inputs.size() == 1)
{
auto t = input_shape.type();
if(input_shape.dynamic() and std::any_of(axes.begin(), axes.end(), [&](auto axis) {
return not input_shape.dyn_dims()[axis].is_fixed();
}))
{
MIGRAPHX_THROW("SLICE: slicing is not allowed on non-fixed dynamic input axis ");
}
if(input_shape.dynamic())
{
return shape{t,
lens_calc(input_shape.min_lens(), starts, ends, axes),
lens_calc(input_shape.max_lens(), starts, ends, axes),
{}};
}
else
{
return shape{
t, lens_calc(input_shape.lens(), starts, ends, axes), input_shape.strides()};
}
}
else
{
// check that starts, ends, and optionally input_axes are all 1D, have the same
// dimension, and are static
check_shapes{inputs.begin() + 1,
inputs.end(),
std::string("SLICE: inputs (starts, ends, and input_axes)"),
false}
.only_dims(1)
.same_dims();
auto dds = input_shape.to_dynamic().dyn_dims();
if(inputs.size() == 3)
{
if(inputs[1].lens().at(0) != axes.size())
{
MIGRAPHX_THROW("SLICE: inputs starts and ends do not have the same dimension "
"as the axes attribute");
}
std::for_each(axes.cbegin(), axes.cend(), [&](const auto& axis) {
dds.at(axis) = {0, dds.at(axis).max};
});
}
else
{
// if axes is an input, then all the output dimensions could be 0 to the max value
std::transform(dds.begin(), dds.end(), dds.begin(), [](auto dd) {
return shape::dynamic_dimension{0, dd.max};
});
}
return shape{input_shape.type(), dds};
}
}
/**
* Calculates the starting offset for the sliced tensor.
* Used in compute when only data input and all other information are in the attributes.
*
* \param s static input shape
*/
auto compute_offset(const shape& s) const auto compute_offset(const shape& s) const
{ {
const std::vector<std::size_t>& lens = s.lens(); const std::vector<std::size_t>& lens = s.lens();
...@@ -90,80 +189,131 @@ struct slice ...@@ -90,80 +189,131 @@ struct slice
offset += starts[axis] * strides[axis]; offset += starts[axis] * strides[axis];
} }
} }
return offset; return offset * s.type_size();
} }
shape normalize_compute_shape(std::vector<shape> inputs) const /**
* Calculates the starting offset for the sliced tensor (for aliasing).
* Used when the starts and/or the axes are inputs.
*
* \param s static input shape
* \param input_starts starting indices of slice
* \param ax_vec axes to slice on
*/
template <class IndView, class Axes>
auto compute_offset(const shape& s, const IndView& input_starts, const Axes& ax_vec) const
{ {
check_shapes{inputs, *this, true}.has(1); auto ret = 0;
auto input_shape = inputs[0]; for(std::size_t i = 0; i < ax_vec.size(); ++i)
auto t = input_shape.type();
// TODO: When support for dynamic shapes is added to normalize_attributes,
// remove this restriction.
if(input_shape.dynamic() and std::any_of(axes.begin(), axes.end(), [&](auto axis) {
return not input_shape.dyn_dims()[axis].is_fixed();
}))
{ {
MIGRAPHX_THROW("SLICE: slicing is not allowed on non-fixed dynamic input axis "); auto axis = ax_vec[i];
ret += input_starts[i] * s.strides().at(axis);
} }
return ret * s.type_size();
}
std::unordered_map<std::string, std::vector<int64_t>>
normalize_inputs(const shape& input_shape,
const std::vector<int64_t>& input_starts,
const std::vector<int64_t>& input_ends) const
{
auto attrs = this->attributes().at("normalize_axes");
return {{"input_starts",
normalize_indices(input_starts,
this->axes,
input_shape,
attrs.at("starts"),
"Slice variable input_starts")},
{"input_ends",
normalize_indices(input_ends,
this->axes,
input_shape,
attrs.at("ends"),
"Slice variable input_ends")}};
}
/**
* Three input version of the normalize_inputs.
* This one also checks that the input_axes are valid.
*/
std::unordered_map<std::string, std::vector<int64_t>>
normalize_inputs(shape input_shape,
const std::vector<int64_t>& input_starts,
const std::vector<int64_t>& input_ends,
const std::vector<int64_t>& input_axes) const
{
auto attrs = this->attributes().at("normalize_axes");
auto norm_axes =
normalize_axes(input_axes, input_shape, attrs.at("axes"), "Slice variable input_axes");
return {{"input_starts",
normalize_indices(input_starts,
norm_axes,
input_shape,
attrs.at("starts"),
"Slice variable input_starts")},
{"input_ends",
normalize_indices(input_ends,
norm_axes,
input_shape,
attrs.at("ends"),
"Slice variable input ends")},
{"input_axes", norm_axes}};
}
// For a static shape, old_lens will be adjusted to a new size argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
// for those axes that are sliced. {
// For dynamic shape, the adjusted old_lens become the new max values, auto input = args[0];
// while updating the old mins and optimals if possible. auto input_shape = input.get_shape();
std::vector<std::size_t> new_mins; switch(args.size())
std::vector<std::size_t> old_lens;
std::vector<std::size_t> old_strides;
// Doesn't handle optimals
if(input_shape.dynamic())
{ {
old_lens = input_shape.max_lens(); case 1: {
new_mins = input_shape.min_lens(); std::size_t offset = compute_offset(input_shape);
return {dyn_out.computed_shape, [=] { return input.data() + offset; }};
} }
else case 3: {
{ shape calc_shape;
old_lens = input_shape.lens(); std::size_t offset = 0;
// For static shape (including during eval step after a dynamic input) the strides are visit_all(args[1], args[2])([&](auto input_starts, auto input_ends) {
// indexed into the pre-slice array, so they are larger than the apparent size of the auto norm_inputs = normalize_inputs(input_shape,
// resulting shape. input_starts.template to_vector<int64_t>(),
old_strides = input_shape.strides(); input_ends.template to_vector<int64_t>());
offset = compute_offset(input_shape, norm_inputs.at("input_starts"), this->axes);
calc_shape = {input_shape.type(),
lens_calc(input_shape.lens(),
norm_inputs.at("input_starts"),
norm_inputs.at("input_ends"),
this->axes),
input_shape.strides()};
});
return {calc_shape, [=] { return input.data() + offset; }};
} }
case 4: {
std::vector<std::size_t> new_lens = old_lens; shape calc_shape;
for(std::size_t i = 0; i < axes.size(); i++) std::size_t offset = 0;
{ visit_all(args[1], args[2], args[3])(
auto axis = axes[i]; [&](auto input_starts, auto input_ends, auto input_axes) {
size_t sliced_length = ends[i] - starts[i]; auto norm_inputs = normalize_inputs(input_shape,
// A Numpy indexing convention: a slice size larger than the actual dimension input_starts.template to_vector<int64_t>(),
// is legal and the "ends" value is clipped to the axis size input_ends.template to_vector<int64_t>(),
new_lens[axis] = std::min(new_lens[axis], sliced_length); input_axes.template to_vector<int64_t>());
if(input_shape.dynamic()) offset = compute_offset(
{ input_shape, norm_inputs.at("input_starts"), norm_inputs.at("input_axes"));
// TODO: when non-fixed shape slicing is allowed, this will be different than calc_shape = shape{input_shape.type(),
// sliced_length, making use of TBD start/end values. lens_calc(input_shape.lens(),
std::size_t sliced_min_length = ends[i] - starts[i]; norm_inputs.at("input_starts"),
// if the slice size is smaller than maxes but larger than mins norm_inputs.at("input_ends"),
new_mins[axis] = std::min(sliced_min_length, new_mins[axis]); norm_inputs.at("input_axes")),
} input_shape.strides()};
});
return {calc_shape, [=] { return input.data() + offset; }};
} }
if(input_shape.dynamic()) default: {
{ // Should never get here; covering in case some code change occurs
return shape{t, new_mins, new_lens, {}}; MIGRAPHX_THROW("SLICE: invalid number of inputs");
} }
else
{
return shape{t, new_lens, old_strides};
} }
} }
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
auto input = args[0];
auto offset = compute_offset(input.get_shape()) * dyn_out.computed_shape.type_size();
return {dyn_out.computed_shape, [=] { return input.data() + offset; }};
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; } std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
}; };
......
...@@ -389,7 +389,7 @@ void instruction::print(std::ostream& os, ...@@ -389,7 +389,7 @@ void instruction::print(std::ostream& os,
if(not ins->module_inputs().empty()) if(not ins->module_inputs().empty())
{ {
std::string delim = ", ["; std::string delim = ", [";
for(auto&& mod_arg : ins->module_inputs()) for(const const_module_ref& mod_arg : ins->module_inputs())
{ {
os << delim << mod_arg->name(); os << delim << mod_arg->name();
delim = ", "; delim = ", ";
......
...@@ -23,9 +23,9 @@ ...@@ -23,9 +23,9 @@
*/ */
#include <migraphx/memory_coloring.hpp> #include <migraphx/memory_coloring.hpp>
#include <migraphx/module.hpp> #include <migraphx/module.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/instruction.hpp> #include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp> #include <migraphx/iterator_for.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/functional.hpp> #include <migraphx/functional.hpp>
#include <migraphx/algorithm.hpp> #include <migraphx/algorithm.hpp>
#include <migraphx/ranges.hpp> #include <migraphx/ranges.hpp>
...@@ -382,7 +382,8 @@ void memory_coloring::apply(module& m) const ...@@ -382,7 +382,8 @@ void memory_coloring::apply(module& m) const
auto s = ins->get_shape(); auto s = ins->get_shape();
std::size_t offset = seg.first * alignment; std::size_t offset = seg.first * alignment;
assert(offset < n); assert(offset < n);
m.replace_instruction(ins, op::load{s, offset}, mem); m.replace_instruction(
ins, make_op("load", {{"shape", to_value(s)}, {"offset", offset}}), mem);
} }
// Replace zero allocation // Replace zero allocation
...@@ -391,7 +392,8 @@ void memory_coloring::apply(module& m) const ...@@ -391,7 +392,8 @@ void memory_coloring::apply(module& m) const
if(ins->name() != allocation_op) if(ins->name() != allocation_op)
continue; continue;
assert(ins->get_shape().bytes() == 0); assert(ins->get_shape().bytes() == 0);
m.replace_instruction(ins, op::load{ins->get_shape(), 0}, mem); m.replace_instruction(
ins, make_op("load", {{"shape", to_value(ins->get_shape())}, {"offset", 0}}), mem);
} }
// Remove scratch parameter if its not used // Remove scratch parameter if its not used
......
...@@ -873,12 +873,11 @@ module::print_py(std::ostream& os, ...@@ -873,12 +873,11 @@ module::print_py(std::ostream& os,
if(ins->name() == "@literal") if(ins->name() == "@literal")
{ {
os << mname << ".add_literal("; os << mname << ".add_literal(";
bool use_abs = false; const bool use_abs = false;
ins->get_literal().visit([&](auto v) {
use_abs = std::none_of(v.begin(), v.end(), [](auto x) { return x < 0; });
});
// Disable abs for now // Disable abs for now
use_abs = false; // ins->get_literal().visit([&](auto v) {
// use_abs = std::none_of(v.begin(), v.end(), [](auto x) { return x < 0; });
// });
if(use_abs) if(use_abs)
os << "migraphx.abs_literal("; os << "migraphx.abs_literal(";
os << "migraphx.generate_argument("; os << "migraphx.generate_argument(";
......
...@@ -49,6 +49,10 @@ auto tune_attribute(const std::vector<int64_t>& vec, ...@@ -49,6 +49,10 @@ auto tune_attribute(const std::vector<int64_t>& vec,
Message m) Message m)
{ {
std::vector<int64_t> result(vec); std::vector<int64_t> result(vec);
if(result.empty())
{
return result;
};
int64_t n_rank = input_shape.ndim(); int64_t n_rank = input_shape.ndim();
std::vector<op::normalize_attribute> vec_attrs = val.to_vector<op::normalize_attribute>(); std::vector<op::normalize_attribute> vec_attrs = val.to_vector<op::normalize_attribute>();
if(contains(vec_attrs, op::normalize_attribute::use_output)) if(contains(vec_attrs, op::normalize_attribute::use_output))
...@@ -251,5 +255,22 @@ bool normalize_attributes(operation& op, const shape& input_shape) ...@@ -251,5 +255,22 @@ bool normalize_attributes(operation& op, const shape& input_shape)
return tuned; return tuned;
} }
std::vector<int64_t> normalize_axes(const std::vector<int64_t>& axes,
const shape& input_shape,
const value& attr_val,
const std::string& prefix)
{
return tune_attribute(axes, {}, attr_val, input_shape, [&] { return prefix; });
}
std::vector<int64_t> normalize_indices(const std::vector<int64_t>& indices,
const std::vector<int64_t>& axes,
const shape& input_shape,
const value& attr_val,
const std::string& prefix)
{
return tune_attribute(indices, axes, attr_val, input_shape, [&] { return prefix; });
}
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx } // namespace migraphx
...@@ -117,6 +117,7 @@ struct onnx_parser ...@@ -117,6 +117,7 @@ struct onnx_parser
parse_graph(module* mod, const onnx::GraphProto& graph, bool inlining = false); parse_graph(module* mod, const onnx::GraphProto& graph, bool inlining = false);
literal parse_value(const onnx::AttributeProto& attr) const; literal parse_value(const onnx::AttributeProto& attr) const;
literal parse_tensor(const onnx::TensorProto& t) const; literal parse_tensor(const onnx::TensorProto& t) const;
shape parse_type(const onnx::TypeProto& t) const;
shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims) const; shape parse_type(const onnx::TypeProto& t, const std::vector<std::size_t>& input_dims) const;
}; };
......
...@@ -357,10 +357,9 @@ parse_inputs(const onnx_parser& parser, ...@@ -357,10 +357,9 @@ parse_inputs(const onnx_parser& parser,
} }
shape s; shape s;
std::vector<std::size_t> dims;
if(parser.map_input_dims.count(name) > 0) if(parser.map_input_dims.count(name) > 0)
{ {
dims = parser.map_input_dims.at(name); std::vector<std::size_t> dims = parser.map_input_dims.at(name);
s = parser.parse_type(input.type(), dims); s = parser.parse_type(input.type(), dims);
} }
else if(parser.map_dyn_input_dims.count(name) > 0) else if(parser.map_dyn_input_dims.count(name) > 0)
...@@ -370,7 +369,7 @@ parse_inputs(const onnx_parser& parser, ...@@ -370,7 +369,7 @@ parse_inputs(const onnx_parser& parser,
} }
else else
{ {
s = parser.parse_type(input.type(), dims); s = parser.parse_type(input.type());
} }
mod_insts[name] = mod->add_parameter(name, s); mod_insts[name] = mod->add_parameter(name, s);
} }
...@@ -553,14 +552,9 @@ literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const ...@@ -553,14 +552,9 @@ literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
} }
MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type"); MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
} }
shape onnx_parser::parse_type(const onnx::TypeProto& t, shape onnx_parser::parse_type(const onnx::TypeProto& t) const
const std::vector<std::size_t>& input_dims) const
{ {
shape::type_t shape_type = get_type(t.tensor_type().elem_type()); shape::type_t shape_type = get_type(t.tensor_type().elem_type());
if(not input_dims.empty())
{
return {shape_type, input_dims};
}
std::vector<shape::dynamic_dimension> dynamic_dims; std::vector<shape::dynamic_dimension> dynamic_dims;
auto&& tensor_dims = t.tensor_type().shape().dim(); auto&& tensor_dims = t.tensor_type().shape().dim();
...@@ -590,6 +584,15 @@ shape onnx_parser::parse_type(const onnx::TypeProto& t, ...@@ -590,6 +584,15 @@ shape onnx_parser::parse_type(const onnx::TypeProto& t,
return shape_from_dyn_dims(shape_type, dynamic_dims); return shape_from_dyn_dims(shape_type, dynamic_dims);
} }
shape onnx_parser::parse_type(const onnx::TypeProto& t,
const std::vector<std::size_t>& input_dims) const
{
shape::type_t shape_type = get_type(t.tensor_type().elem_type());
if(input_dims.empty())
return {shape_type};
return {shape_type, input_dims};
}
shape::type_t get_type(int dtype) shape::type_t get_type(int dtype)
{ {
switch(dtype) switch(dtype)
......
...@@ -55,9 +55,6 @@ struct parse_constant_of_shape : op_parser<parse_constant_of_shape> ...@@ -55,9 +55,6 @@ struct parse_constant_of_shape : op_parser<parse_constant_of_shape>
l_val = literal({shape::float_type, {1}, {0}}, {0.0f}); l_val = literal({shape::float_type, {1}, {0}}, {0.0f});
} }
// input is empty, output is a scalar
auto type = l_val.get_shape().type();
if(args.empty()) if(args.empty())
{ {
MIGRAPHX_THROW("ConstantOfShape : must have 1 input!"); MIGRAPHX_THROW("ConstantOfShape : must have 1 input!");
...@@ -65,6 +62,8 @@ struct parse_constant_of_shape : op_parser<parse_constant_of_shape> ...@@ -65,6 +62,8 @@ struct parse_constant_of_shape : op_parser<parse_constant_of_shape>
else else
{ {
migraphx::shape s; migraphx::shape s;
// input is empty, output is a scalar
auto type = l_val.get_shape().type();
// empty input tensor, output is a scalar // empty input tensor, output is a scalar
if(args[0]->get_shape().elements() == 0) if(args[0]->get_shape().elements() == 0)
{ {
......
...@@ -96,7 +96,7 @@ struct parse_randomuniform_ops : op_parser<parse_randomuniform_ops> ...@@ -96,7 +96,7 @@ struct parse_randomuniform_ops : op_parser<parse_randomuniform_ops>
if(contains(info.attributes, "seed")) if(contains(info.attributes, "seed"))
gen.seed(info.attributes.at("seed").f()); gen.seed(info.attributes.at("seed").f());
std::uniform_real_distribution<> d(high, low); std::uniform_real_distribution<> d(low, high);
std::vector<double> rand_vals(out_shape.elements()); std::vector<double> rand_vals(out_shape.elements());
std::generate(rand_vals.begin(), rand_vals.end(), [&]() { return d(gen); }); std::generate(rand_vals.begin(), rand_vals.end(), [&]() { return d(gen); });
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment