Unverified Commit 25e8cf0b authored by Ted Themistokleous's avatar Ted Themistokleous Committed by GitHub
Browse files

Merge branch 'develop' into test_onnx_zoo

parents a313a68e 635502be
......@@ -32,7 +32,13 @@
#include <mlir-c/Dialect/MIGraphX.h>
#include <mlir-c/IntegerSet.h>
#include <mlir-c/Pass.h>
#include <mlir-c/Registration.h>
#include <mutex>
#if !defined(MLIR_MIGRAPHX_DIALECT_API_VERSION) || MLIR_MIGRAPHX_DIALECT_API_VERSION != 3
#warning "Incompatible version of rocMLIR library used, disabling"
#undef MIGRAPHX_MLIR
#else
#include <mlir-c/RegisterRocMLIR.h>
#endif
#endif
#include <migraphx/env.hpp>
......@@ -50,10 +56,6 @@
#include <deque>
#include <variant>
#if defined(MLIR_MIGRAPHX_DIALECT_API_VERSION) && MLIR_MIGRAPHX_DIALECT_API_VERSION >= 2
#define MIGRAPHX_MLIR_BARE_POINTER
#endif
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
......@@ -168,9 +170,11 @@ struct mlir_program
location(mlirLocationUnknownGet(ctx.get())),
mmodule(mlirModuleCreateEmpty(location))
{
MlirDialectHandle mixr_handle = mlirGetDialectHandle__migraphx__();
mlirDialectHandleRegisterDialect(mixr_handle, ctx.get());
mlirRegisterAllDialects(ctx.get());
MlirDialectRegistry registry = mlirDialectRegistryCreate();
mlirRegisterRocMLIRDialects(registry);
mlirContextAppendDialectRegistry(ctx.get(), registry);
mlirContextLoadAllAvailableDialects(ctx.get());
mlirDialectRegistryDestroy(registry);
mlirContextSetAllowUnregisteredDialects(ctx.get(), true /*allow*/);
}
......@@ -452,7 +456,8 @@ struct mlir_program
auto ops = create_operation_state("func.func");
ops.add_attributes({{"function_type", make_function_type(inputs, outputs)},
{"sym_name", std::string("main")},
{"kernel", std::string("mixr")}});
{"kernel", std::string("mixr")},
{"arch", target_arch}});
ops.add_region(std::move(region));
insert(body, std::move(ops));
......@@ -512,7 +517,8 @@ struct mlir_program
pp =
problem_params{ins->get_operator(), to_shapes(ins->inputs()), ins->get_shape()};
// check if HW supports xdlops
bool xdlops = contains(get_xdlops_archs(), target_name);
auto target_chip = trim(split_string(target_arch, ':').front());
bool xdlops = contains(get_xdlops_archs(), target_chip);
std::string tuned = get_tune_params(xdlops);
if(not tuned.empty())
ops.add_attributes({{"perf_config", tuned}});
......@@ -540,7 +546,7 @@ struct mlir_program
// 1st pipeline to call
mlirMIGraphXAddHighLevelPipeline(pm.get());
// 2nd pipeline to call
mlirMIGraphXAddBackendPipeline(pm.get(), target_name.c_str(), "amdgcn-amd-amdhsa", "");
mlirMIGraphXAddBackendPipeline(pm.get(), target_arch.c_str());
mlirPassManagerRun(pm.get(), mmodule.get());
code_object_op op{};
......@@ -550,16 +556,7 @@ struct mlir_program
return op;
}
void find_target()
{
std::string tname = get_device_name();
// HACK: Since MLIR can't handle the full target name
target_name = trim(split_string(tname, ':').front());
if(tname.size() != target_name.size())
std::cout
<< "*************** WARNING: MLIR may not compile the correct target features for: "
<< tname << std::endl;
}
void find_target() { target_arch = get_device_name(); }
std::pair<std::size_t, std::size_t> get_launch_params() const
{
......@@ -588,7 +585,7 @@ struct mlir_program
mlir_module mmodule;
problem_params pp;
std::deque<std::string> strings{};
std::string target_name;
std::string target_arch;
};
std::string dump_mlir(const module& m)
......@@ -650,6 +647,10 @@ code_object_op compile_mlir(const context&, module m, const std::vector<instruct
const bool trace = enabled(MIGRAPHX_TRACE_MLIR{});
if(trace)
std::cout << m << std::endl;
// set mutex while llvm thread support is disabled.
static std::mutex g_mlirc_mutex; // NOLINT
const std::lock_guard<std::mutex> lock(g_mlirc_mutex);
mlir_program mp;
mp.find_target();
mp.parse(m);
......@@ -669,46 +670,9 @@ instruction_ref insert_mlir(module& m,
std::vector<instruction_ref> refs;
std::size_t last = 0;
#ifdef MIGRAPHX_MLIR_BARE_POINTER
refs.reserve(inputs.size());
std::copy(inputs.begin(), inputs.end(), std::back_inserter(refs));
last = refs.size() - 1;
#else
refs.reserve(inputs.size() * 15);
std::unordered_map<uint64_t, instruction_ref> literal_map{};
auto get_literal = [&](uint64_t value) {
auto fi = literal_map.find(value);
if(fi != literal_map.end())
return fi->second;
auto lit = m.add_literal(value);
literal_map.emplace(value, lit);
return lit;
};
for(auto input : inputs)
{
const size_t offset = 0;
auto s = input->get_shape();
last = refs.size();
refs.push_back(input);
refs.push_back(input);
refs.push_back(get_literal(offset)); // offset
// dim sizes
std::transform(s.lens().begin(),
s.lens().end(),
std::back_inserter(refs),
[&](const auto& lval) { return get_literal(lval); });
// refs.push_back(get_literal(1)); // G
// dim strides
std::transform(s.strides().begin(),
s.strides().end(),
std::back_inserter(refs),
[&](const auto& lval) { return get_literal(lval); });
// refs.push_back(get_literal(1)); // G
}
#endif
last = refs.size() - 1;
co.expected_inputs = to_shapes(refs);
co.output_arg = last;
return m.insert_instruction(ins, co, refs);
......
......@@ -27,6 +27,7 @@
#include <migraphx/stringutils.hpp>
#include <migraphx/permutation.hpp>
#include <fstream>
#include <mutex>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -88,6 +89,9 @@ std::string generate_miopen_config(const problem_params& pp)
auto query_miopen_db(const std::string& query)
{
static std::mutex g_db_mutex; // NOLINT
const std::lock_guard<std::mutex> lock(g_db_mutex);
// TODO: Store db as a static variable
const auto dbpath = fs::path{"/opt"} / "rocm" / "share" / "miopen" / "db" / "miopen.db";
// Check if db file exists.
......
......@@ -51,17 +51,20 @@ struct layernorm_base
}
check_shapes{inputs, static_cast<const Derived&>(*this)}.has(nargs + N);
auto s = inputs.at(0);
auto t = s.type();
if(not mods.empty())
t = mods.front()->get_output_shapes().front().type();
if(s.scalar())
{
return s;
}
else if(s.broadcasted())
{
return {s.type(), s.lens()};
return {t, s.lens()};
}
else
{
return s.with_lens(s.lens());
return s.with_lens(t, s.lens());
}
}
};
......@@ -97,7 +100,8 @@ struct find_add_layernorm
{
auto matcher() const
{
return match::layernorm()(match::var("x")(match::name("add").bind("add")));
return match::layernorm()(
match::var("x")(match::name("add")(match::used_once()).bind("add")));
}
void apply(module& m, const match::matcher_result& r) const
......
......@@ -146,8 +146,6 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
dead_code_elimination{},
pack_int8_args{},
dead_code_elimination{},
adjust_allocation{gpu_allocation_model{}},
dead_code_elimination{},
fuse_ops{&ctx, options.fast_math},
dead_code_elimination{},
replace_allocate{gpu_allocation_model{}, options.offload_copy},
......
......@@ -346,10 +346,10 @@ struct ref_pad
std::string name() const { return "ref::pad"; }
shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
argument compute(context&, const shape& output_shape, std::vector<argument> args) const
argument compute(context&, const dyn_output& dyn_out, std::vector<argument> args) const
{
assert(output_shape.standard());
argument result{output_shape};
assert(dyn_out.computed_shape.standard());
argument result{dyn_out.computed_shape};
result.visit([&](auto output) {
using type = typename decltype(output)::value_type;
std::fill(output.begin(), output.end(), pad_clamp<type>(op.value));
......@@ -383,9 +383,9 @@ struct ref_gemm
std::string name() const { return "ref::dot"; }
shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
argument compute(context&, const shape& output_shape, std::vector<argument> args) const
argument compute(context&, const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result{output_shape};
argument result{dyn_out.computed_shape};
migemm(result, args[0], args[1], 1.0f, 0.0f);
return result;
......@@ -449,10 +449,10 @@ struct ref_softmax : auto_register_op<ref_softmax<Op>>
{
return op.normalize_compute_shape(inputs);
}
argument compute(context&, const shape& output_shape, std::vector<argument> args) const
argument compute(context&, const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result{output_shape};
auto batch_lens = output_shape.lens();
argument result{dyn_out.computed_shape};
auto batch_lens = dyn_out.computed_shape.lens();
int64_t tuned_axis = tune_axis(args[0].get_shape().lens().size(), op.axis, op.name());
std::size_t n_dims = batch_lens[tuned_axis];
batch_lens[tuned_axis] = 1;
......@@ -475,7 +475,7 @@ struct ref_softmax : auto_register_op<ref_softmax<Op>>
for(std::size_t j = 0; j < n_dims; ++j)
{
idx[tuned_axis] = j;
std::size_t index = output_shape.index(idx);
std::size_t index = dyn_out.computed_shape.index(idx);
output[index] = std::exp(input[index] - batch_max[i]);
}
......
......@@ -66,7 +66,7 @@ TEST_CASE(load_and_run_init_list)
TEST_CASE(quantize_fp16)
{
auto p1 = migraphx::parse_onnx("gemm_ex_test.onnx");
auto p1 = migraphx::parse_onnx("gemm_test.onnx");
const auto& p2 = p1;
const auto& p3 = p1;
migraphx::quantize_fp16(p1);
......@@ -82,7 +82,7 @@ TEST_CASE(quantize_fp16)
TEST_CASE(quantize_int8)
{
auto p1 = migraphx::parse_onnx("gemm_ex_test.onnx");
auto p1 = migraphx::parse_onnx("gemm_test.onnx");
const auto& p2 = p1;
auto t = migraphx::target("ref");
migraphx::quantize_int8_options options;
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <test.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/gpu/target.hpp>
TEST_CASE(tuple_to_from_gpu)
{
migraphx::shape s1{migraphx::shape::float_type, {2, 3}};
migraphx::shape s2{migraphx::shape::int32_type, {2, 4}};
std::vector<float> p1_data = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6};
std::vector<int> p2_data = {1, 2, 3, 4, 5, 6, 7, 8};
auto p1 = migraphx::argument{s1, p1_data.data()};
auto p2 = migraphx::argument{s2, p2_data.data()};
auto p1_gpu = migraphx::gpu::to_gpu(p1);
auto p2_gpu = migraphx::gpu::to_gpu(p2);
auto p_tuple = migraphx::gpu::from_gpu(migraphx::argument({p1_gpu, p2_gpu}));
std::vector<migraphx::argument> results = p_tuple.get_sub_objects();
std::vector<float> result1;
results[0].visit([&](auto output) { result1.assign(output.begin(), output.end()); });
std::vector<int> result2;
results[1].visit([&](auto output) { result2.assign(output.begin(), output.end()); });
EXPECT(result1 == p1_data);
EXPECT(result2 == p2_data);
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
......@@ -140,7 +140,7 @@ TEST_CASE(conv)
{
const std::string mlir_output = R"__migraphx__(
module {
func.func @main(%arg0: tensor<2x8x3x3xf32>, %arg1: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {kernel = "mixr"} {
func.func @main(%arg0: tensor<2x8x3x3xf32>, %arg1: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {arch = "", kernel = "mixr"} {
%0 = migraphx.convolution(%arg1, %arg0) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1]} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
return %0 : tensor<1x2x2x2xf32>
}
......@@ -163,7 +163,7 @@ TEST_CASE(conv_add_relu)
{
const std::string mlir_output = R"__migraphx__(
module {
func.func @main(%arg0: tensor<1x2x2x2xf32>, %arg1: tensor<2x8x3x3xf32>, %arg2: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {kernel = "mixr"} {
func.func @main(%arg0: tensor<1x2x2x2xf32>, %arg1: tensor<2x8x3x3xf32>, %arg2: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {arch = "", kernel = "mixr"} {
%0 = migraphx.convolution(%arg2, %arg1) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1]} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
%1 = migraphx.add(%0, %arg0) : (tensor<1x2x2x2xf32>, tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
%2 = migraphx.relu(%1) : (tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/instruction.hpp>
#include <migraphx/program.hpp>
#include <migraphx/make_op.hpp>
#include "test.hpp"
TEST_CASE(check_undefined)
{
migraphx::module m;
auto und = m.add_instruction(migraphx::make_op("undefined"));
auto cov = m.add_instruction(
migraphx::make_op("convert", {{"target_type", migraphx::shape::half_type}}), und);
auto abs = m.add_instruction(migraphx::make_op("abs"), cov);
migraphx::shape xs{migraphx::shape::float_type, {2, 3}};
std::vector<float> datax = {1, 2, 3, 4, 5, 6};
auto lit = m.add_literal(migraphx::literal(xs, datax));
auto mul = m.add_instruction(migraphx::make_op("mul"), lit, lit);
EXPECT(und->is_undefined());
EXPECT(cov->is_undefined());
EXPECT(abs->is_undefined());
EXPECT(not lit->is_undefined());
EXPECT(not mul->is_undefined());
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
......@@ -49,6 +49,25 @@ TEST_CASE(literal_test)
EXPECT(l4.empty());
}
TEST_CASE(literal_nstd_shape_vector)
{
migraphx::shape nstd_shape{migraphx::shape::float_type, {1, 3, 2, 2}, {12, 1, 6, 3}};
std::vector<float> data(12);
std::iota(data.begin(), data.end(), 0);
auto l0 = migraphx::literal{nstd_shape, data};
// check data buffer is read in correctly
std::vector<float> expected_buffer = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
const auto* start = reinterpret_cast<const float*>(l0.data());
std::vector<float> l0_data{start, start + 12};
EXPECT(l0_data == expected_buffer);
// check that using visit() (that uses a tensor view) gives data in correct order
std::vector<float> results_vector(12);
l0.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(results_vector == data);
}
TEST_CASE(literal_os1)
{
migraphx::literal l{1};
......
c9a53c925510a101f5ca94d5ecda0924e40a8463
external_constant_test:¡
v0"Constant*g
value*[B const_tensorj)
locationexternal_constant_test.weightj
offset48j
length24p external_constant_testb
0

B
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment