Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
25e8cf0b
"testing/vscode:/vscode.git/clone" did not exist on "b10d49b2c0197d74a2c2864e57a2f67a9d880345"
Unverified
Commit
25e8cf0b
authored
Jan 27, 2023
by
Ted Themistokleous
Committed by
GitHub
Jan 27, 2023
Browse files
Merge branch 'develop' into test_onnx_zoo
parents
a313a68e
635502be
Changes
138
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
698 additions
and
223 deletions
+698
-223
src/include/migraphx/op/reshape.hpp
src/include/migraphx/op/reshape.hpp
+71
-7
src/include/migraphx/op/softmax.hpp
src/include/migraphx/op/softmax.hpp
+5
-5
src/include/migraphx/op/squeeze.hpp
src/include/migraphx/op/squeeze.hpp
+63
-29
src/include/migraphx/op/transpose.hpp
src/include/migraphx/op/transpose.hpp
+31
-15
src/include/migraphx/op/unsqueeze.hpp
src/include/migraphx/op/unsqueeze.hpp
+76
-41
src/include/migraphx/program.hpp
src/include/migraphx/program.hpp
+1
-0
src/include/migraphx/shape.hpp
src/include/migraphx/shape.hpp
+13
-0
src/include/migraphx/shape_for_each.hpp
src/include/migraphx/shape_for_each.hpp
+3
-1
src/insert_pad.cpp
src/insert_pad.cpp
+2
-2
src/instruction.cpp
src/instruction.cpp
+18
-0
src/module.cpp
src/module.cpp
+89
-0
src/onnx/onnx_parser.cpp
src/onnx/onnx_parser.cpp
+31
-8
src/onnx/parse_gemm.cpp
src/onnx/parse_gemm.cpp
+56
-39
src/onnx/parse_matmul.cpp
src/onnx/parse_matmul.cpp
+58
-34
src/onnx/parse_pad.cpp
src/onnx/parse_pad.cpp
+6
-0
src/onnx/parse_pooling.cpp
src/onnx/parse_pooling.cpp
+82
-38
src/onnx/parse_reduce_op.cpp
src/onnx/parse_reduce_op.cpp
+1
-2
src/onnx/parse_reshape.cpp
src/onnx/parse_reshape.cpp
+1
-1
src/onnx/parse_transpose.cpp
src/onnx/parse_transpose.cpp
+1
-1
src/onnx/parse_trilu.cpp
src/onnx/parse_trilu.cpp
+90
-0
No files found.
src/include/migraphx/op/reshape.hpp
View file @
25e8cf0b
...
@@ -28,6 +28,7 @@
...
@@ -28,6 +28,7 @@
#include <migraphx/argument.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
@@ -46,14 +47,60 @@ struct reshape
...
@@ -46,14 +47,60 @@ struct reshape
value
attributes
()
const
{
return
{{
"require_std_shape"
,
true
}};
}
value
attributes
()
const
{
return
{{
"require_std_shape"
,
true
}};
}
std
::
string
name
()
const
{
return
"reshape"
;
}
std
::
string
name
()
const
{
return
"reshape"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
shape
dyn_compute_shape
(
shape
s0
)
const
{
auto
dyn_dims
=
s0
.
dyn_dims
();
auto
num_not_fixed
=
std
::
count_if
(
dyn_dims
.
cbegin
(),
dyn_dims
.
cend
(),
[](
auto
dd
)
{
return
not
dd
.
is_fixed
();
});
if
(
num_not_fixed
!=
1
)
{
MIGRAPHX_THROW
(
"Reshape: Only supports one non-fixed dynamic_dimension"
);
}
// track number of fixed elements in input and output
std
::
size_t
num_dims_ele
=
1
;
std
::
size_t
num_dd_ele
=
1
;
for
(
std
::
size_t
i
=
0
;
i
<
dyn_dims
.
size
();
++
i
)
{
if
(
dyn_dims
[
i
].
is_fixed
())
{
num_dims_ele
*=
dims
[
i
];
num_dd_ele
*=
dyn_dims
[
i
].
min
;
}
else
{
if
(
dims
[
i
]
!=
0
and
dims
[
i
]
!=
-
1
)
{
MIGRAPHX_THROW
(
"Reshape: Non-fixed dynamic_dimension doesn't match with 0 or -1 "
"output dimension"
);
}
}
}
if
(
num_dims_ele
!=
num_dd_ele
)
{
MIGRAPHX_THROW
(
"Reshape: Number of fixed elements must match. Input: "
+
std
::
to_string
(
num_dd_ele
)
+
" Output: "
+
std
::
to_string
(
num_dims_ele
));
}
// construct output dynamic shape from dims attribute
std
::
vector
<
shape
::
dynamic_dimension
>
output_dyn_dims
(
dims
.
size
());
std
::
transform
(
dims
.
cbegin
(),
dims
.
cend
(),
dyn_dims
.
cbegin
(),
output_dyn_dims
.
begin
(),
[](
std
::
size_t
dim
,
auto
dyn_dim
)
{
if
(
not
dyn_dim
.
is_fixed
())
return
dyn_dim
;
return
shape
::
dynamic_dimension
{
dim
,
dim
};
});
return
{
s0
.
type
(),
output_dyn_dims
};
}
shape
static_compute_shape
(
std
::
vector
<
shape
>
inputs
,
std
::
size_t
n_neg_dims
)
const
{
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
).
standard
();
check_shapes
{
inputs
,
*
this
}.
standard
();
auto
&&
idims
=
inputs
.
front
().
lens
();
auto
&&
idims
=
inputs
.
front
().
lens
();
std
::
vector
<
std
::
size_t
>
rdims
(
dims
.
begin
(),
dims
.
end
());
std
::
vector
<
std
::
size_t
>
rdims
(
dims
.
begin
(),
dims
.
end
());
auto
n_neg_dims
=
std
::
count
(
dims
.
begin
(),
dims
.
end
(),
-
1
);
if
(
n_neg_dims
>
1
)
MIGRAPHX_THROW
(
"Reshape: Dimensions for reshape can only have one -1 dim"
);
for
(
std
::
size_t
i
=
0
;
i
<
dims
.
size
();
i
++
)
for
(
std
::
size_t
i
=
0
;
i
<
dims
.
size
();
i
++
)
{
{
...
@@ -86,9 +133,26 @@ struct reshape
...
@@ -86,9 +133,26 @@ struct reshape
return
s
;
return
s
;
}
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
auto
n_neg_dims
=
std
::
count
(
dims
.
begin
(),
dims
.
end
(),
-
1
);
if
(
n_neg_dims
>
1
)
MIGRAPHX_THROW
(
"Reshape: Dimensions for reshape can only have one -1 dim"
);
auto
s0
=
inputs
[
0
];
if
(
s0
.
dynamic
())
{
return
dyn_compute_shape
(
s0
);
}
else
{
return
static_compute_shape
(
inputs
,
n_neg_dims
);
}
}
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
{
return
args
[
0
].
reshape
(
out
put_shape
);
return
args
[
0
].
reshape
(
dyn_out
.
com
put
ed
_shape
);
}
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
...
...
src/include/migraphx/op/softmax.hpp
View file @
25e8cf0b
...
@@ -53,15 +53,15 @@ struct softmax
...
@@ -53,15 +53,15 @@ struct softmax
std
::
string
name
()
const
{
return
"softmax"
;
}
std
::
string
name
()
const
{
return
"softmax"
;
}
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
if
(
inputs
.
at
(
0
).
packed
())
auto
s0
=
inputs
[
0
];
if
(
s0
.
dynamic
()
or
s0
.
packed
())
{
{
return
inputs
.
at
(
0
)
;
return
s0
;
}
}
else
else
{
{
auto
lens
=
inputs
.
at
(
0
).
lens
();
return
{
s0
.
type
(),
s0
.
lens
()};
return
{
inputs
.
at
(
0
).
type
(),
lens
};
}
}
}
}
...
...
src/include/migraphx/op/squeeze.hpp
View file @
25e8cf0b
...
@@ -29,6 +29,7 @@
...
@@ -29,6 +29,7 @@
#include <migraphx/config.hpp>
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/dyn_output.hpp>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
@@ -54,52 +55,85 @@ struct squeeze
...
@@ -54,52 +55,85 @@ struct squeeze
std
::
string
name
()
const
{
return
"squeeze"
;
}
std
::
string
name
()
const
{
return
"squeeze"
;
}
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
auto
input_shape
=
inputs
[
0
];
auto
input_shape
=
inputs
[
0
];
auto
type
=
input_shape
.
type
();
if
(
input_shape
.
dynamic
())
auto
old_lens
=
input_shape
.
lens
();
auto
old_strides
=
input_shape
.
strides
();
if
(
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
axis
)
{
return
old_lens
[
axis
]
!=
1
;
}))
{
{
MIGRAPHX_THROW
(
"squeeze axis dimension should be equal to 1"
);
if
(
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
axis
)
{
}
return
input_shape
.
dyn_dims
()[
axis
]
!=
1
;
std
::
vector
<
std
::
size_t
>
new_lens
;
}))
std
::
vector
<
std
::
size_t
>
new_strides
;
{
if
(
axes
.
empty
())
MIGRAPHX_THROW
(
{
"SQUEEZE: dynamic axis dimension should be equal to {1, 1, 0} or {1, 1, 1}"
);
for
(
auto
i
:
range
(
old_lens
.
size
()))
}
std
::
vector
<
shape
::
dynamic_dimension
>
dyn_dims
=
{};
if
(
axes
.
empty
())
{
std
::
copy_if
(
input_shape
.
dyn_dims
().
cbegin
(),
input_shape
.
dyn_dims
().
cend
(),
std
::
back_inserter
(
dyn_dims
),
[
&
](
auto
dd
)
{
return
dd
!=
1
;
});
}
else
{
{
if
(
old_lens
[
i
]
!=
1
)
for
(
auto
i
:
range
(
input_shape
.
ndim
())
)
{
{
new_lens
.
push_back
(
old_lens
[
i
]);
if
(
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
i
)
==
axes
.
end
())
new_strides
.
push_back
(
old_strides
[
i
]);
{
dyn_dims
.
push_back
(
input_shape
.
dyn_dims
()[
i
]);
}
}
}
}
}
return
{
input_shape
.
type
(),
dyn_dims
};
}
}
else
else
{
{
for
(
auto
i
:
range
(
old_lens
.
size
()))
auto
type
=
input_shape
.
type
();
auto
old_lens
=
input_shape
.
lens
();
auto
old_strides
=
input_shape
.
strides
();
if
(
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
axis
)
{
return
old_lens
[
axis
]
!=
1
;
}))
{
{
if
(
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
i
)
==
axes
.
end
())
MIGRAPHX_THROW
(
"SQUEEZE: static axis dimension should be equal to 1"
);
}
std
::
vector
<
std
::
size_t
>
new_lens
;
std
::
vector
<
std
::
size_t
>
new_strides
;
if
(
axes
.
empty
())
{
for
(
auto
i
:
range
(
old_lens
.
size
()))
{
{
new_lens
.
push_back
(
old_lens
[
i
]);
if
(
old_lens
[
i
]
!=
1
)
new_strides
.
push_back
(
old_strides
[
i
]);
{
new_lens
.
push_back
(
old_lens
[
i
]);
new_strides
.
push_back
(
old_strides
[
i
]);
}
}
}
}
}
}
else
if
(
new_lens
.
empty
())
{
{
for
(
auto
i
:
range
(
old_lens
.
size
()))
return
shape
{
type
};
{
}
if
(
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
i
)
==
axes
.
end
())
else
{
{
new_lens
.
push_back
(
old_lens
[
i
]);
return
shape
{
type
,
new_lens
,
new_strides
};
new_strides
.
push_back
(
old_strides
[
i
]);
}
}
}
if
(
new_lens
.
empty
())
{
return
shape
{
type
};
}
else
{
return
shape
{
type
,
new_lens
,
new_strides
};
}
}
}
}
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
{
return
args
[
0
].
reshape
(
out
put_shape
);
return
args
[
0
].
reshape
(
dyn_out
.
com
put
ed
_shape
);
}
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
};
...
...
src/include/migraphx/op/transpose.hpp
View file @
25e8cf0b
...
@@ -29,6 +29,7 @@
...
@@ -29,6 +29,7 @@
#include <migraphx/config.hpp>
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/dyn_output.hpp>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
@@ -45,17 +46,15 @@ struct transpose
...
@@ -45,17 +46,15 @@ struct transpose
}
}
std
::
string
name
()
const
{
return
"transpose"
;
}
std
::
string
name
()
const
{
return
"transpose"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
auto
input
=
inputs
.
at
(
0
);
auto
input
=
inputs
.
at
(
0
);
auto
input_lens
=
input
.
lens
();
auto
input_strides
=
input
.
strides
();
auto
t
=
input
.
type
();
if
(
dims
.
size
()
!=
input
_lens
.
size
())
if
(
dims
.
size
()
!=
input
.
ndim
())
{
{
MIGRAPHX_THROW
(
"Permutation has wrong number of axes"
);
MIGRAPHX_THROW
(
"
TRANSPOSE:
Permutation has wrong number of axes"
);
}
}
std
::
vector
<
int64_t
>
axes
(
dims
.
size
());
std
::
vector
<
int64_t
>
axes
(
dims
.
size
());
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
0
);
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
0
);
...
@@ -63,19 +62,36 @@ struct transpose
...
@@ -63,19 +62,36 @@ struct transpose
{
{
MIGRAPHX_THROW
(
"TRANSPOSE: Invalid permutation"
);
MIGRAPHX_THROW
(
"TRANSPOSE: Invalid permutation"
);
}
}
std
::
vector
<
size_t
>
output_lens
(
input_lens
.
size
());
std
::
vector
<
size_t
>
output_strides
(
input_lens
.
size
());
if
(
input
.
dynamic
())
for
(
std
::
size_t
i
=
0
;
i
<
output_lens
.
size
();
i
++
)
{
{
output_lens
[
i
]
=
input_lens
[
dims
[
i
]];
std
::
vector
<
shape
::
dynamic_dimension
>
output_dyn_dims
(
input
.
ndim
());
output_strides
[
i
]
=
input_strides
[
dims
[
i
]];
std
::
transform
(
dims
.
cbegin
(),
dims
.
cend
(),
output_dyn_dims
.
begin
(),
[
&
](
auto
dim
)
{
return
input
.
dyn_dims
()[
dim
];
});
return
{
input
.
type
(),
output_dyn_dims
};
}
else
{
auto
input_lens
=
input
.
lens
();
auto
input_strides
=
input
.
strides
();
std
::
vector
<
size_t
>
output_lens
(
input
.
ndim
());
std
::
vector
<
size_t
>
output_strides
(
input
.
ndim
());
for
(
std
::
size_t
i
=
0
;
i
<
input
.
ndim
();
i
++
)
{
output_lens
[
i
]
=
input_lens
[
dims
[
i
]];
output_strides
[
i
]
=
input_strides
[
dims
[
i
]];
}
return
{
input
.
type
(),
output_lens
,
output_strides
};
}
}
return
{
t
,
output_lens
,
output_strides
};
}
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
{
return
args
[
0
].
reshape
(
out
put_shape
);
return
args
[
0
].
reshape
(
dyn_out
.
com
put
ed
_shape
);
}
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
};
...
...
src/include/migraphx/op/unsqueeze.hpp
View file @
25e8cf0b
...
@@ -29,11 +29,20 @@
...
@@ -29,11 +29,20 @@
#include <migraphx/config.hpp>
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/dyn_output.hpp>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
namespace
op
{
/**
* Adds dimensions to a tensor based on the axes attribute.
* `axes` are based on the number of output shape dimensions and should not contain duplicates.
* `steps` are for modifying dimensions added to the middle of the original shape.
* Each step must be a factor of the original dimension.
* ex: unsqueeze(shape = [3, 4, 10], axes = [2, 4, 5], steps = [2]) -> shape = [3, 4, 2, 5, 1, 1]
* Dynamic shape version does not handle `steps`.
*/
struct
unsqueeze
struct
unsqueeze
{
{
std
::
vector
<
int64_t
>
axes
;
std
::
vector
<
int64_t
>
axes
;
...
@@ -56,63 +65,89 @@ struct unsqueeze
...
@@ -56,63 +65,89 @@ struct unsqueeze
std
::
string
name
()
const
{
return
"unsqueeze"
;
}
std
::
string
name
()
const
{
return
"unsqueeze"
;
}
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
auto
input_shape
=
inputs
[
0
];
auto
input_shape
=
inputs
[
0
];
auto
type
=
input_shape
.
type
();
auto
old_lens
=
input_shape
.
lens
();
if
(
input_shape
.
dynamic
())
auto
old_strides
=
input_shape
.
strides
();
if
(
input_shape
.
scalar
())
{
{
if
(
old_lens
.
size
()
==
1
and
old_lens
.
front
()
==
1
)
if
(
not
steps
.
empty
())
return
shape
{
type
,
old_lens
};
{
else
MIGRAPHX_THROW
(
"UNSQUEEZE_dyn: nonempty steps attribute"
);
MIGRAPHX_THROW
(
"UNSQUEEZE: Input must be a scalar"
);
}
std
::
vector
<
shape
::
dynamic_dimension
>
dyn_dims
=
{};
auto
new_ndim
=
input_shape
.
ndim
()
+
axes
.
size
();
std
::
size_t
k
=
0
;
for
(
auto
i
:
range
(
new_ndim
))
{
if
(
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
i
)
!=
axes
.
end
())
{
dyn_dims
.
push_back
({
1
,
1
,
0
});
}
else
{
dyn_dims
.
push_back
(
input_shape
.
dyn_dims
().
at
(
k
++
));
}
}
return
{
input_shape
.
type
(),
dyn_dims
};
}
}
else
{
auto
type
=
input_shape
.
type
();
auto
old_lens
=
input_shape
.
lens
();
auto
old_strides
=
input_shape
.
strides
();
if
(
input_shape
.
scalar
())
{
if
(
old_lens
.
size
()
==
1
and
old_lens
.
front
()
==
1
)
return
shape
{
type
,
old_lens
};
else
MIGRAPHX_THROW
(
"UNSQUEEZE: Input must be a scalar"
);
}
if
(
steps
.
size
()
>
axes
.
size
())
if
(
steps
.
size
()
>
axes
.
size
())
MIGRAPHX_THROW
(
"UNSQUEEZE: Steps provided with no axis"
);
MIGRAPHX_THROW
(
"UNSQUEEZE: Steps provided with no axis"
);
std
::
size_t
new_size
=
old_lens
.
size
()
+
axes
.
size
();
std
::
size_t
new_size
=
old_lens
.
size
()
+
axes
.
size
();
std
::
vector
<
std
::
size_t
>
new_lens
(
new_size
);
std
::
vector
<
std
::
size_t
>
new_lens
(
new_size
);
std
::
vector
<
std
::
size_t
>
new_strides
(
new_size
);
std
::
vector
<
std
::
size_t
>
new_strides
(
new_size
);
std
::
size_t
p
=
0
;
std
::
size_t
p
=
0
;
for
(
auto
i
:
range
(
new_size
))
for
(
auto
i
:
range
(
new_size
))
{
auto
axis_idx
=
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
i
)
-
axes
.
begin
();
if
(
axis_idx
<
axes
.
size
())
{
{
std
::
int64_t
step
=
1
;
auto
axis_idx
=
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
i
)
-
axes
.
begin
();
if
(
axis_idx
<
steps
.
size
())
if
(
axis_idx
<
axes
.
size
())
step
=
steps
[
axis_idx
];
if
(
step
==
0
)
MIGRAPHX_THROW
(
"UNSQUEEZE: step must be non-zero"
);
new_lens
[
i
]
=
step
;
if
(
p
<
old_strides
.
size
())
{
{
if
((
old_lens
[
p
]
%
step
)
!=
0
)
std
::
int64_t
step
=
1
;
MIGRAPHX_THROW
(
"UNSQUEEZE: Axis dimenstion is not divisible by step"
);
if
(
axis_idx
<
steps
.
size
())
old_lens
[
p
]
/=
step
;
step
=
steps
[
axis_idx
];
new_strides
[
i
]
=
old_strides
[
p
]
*
old_lens
[
p
];
if
(
step
==
0
)
MIGRAPHX_THROW
(
"UNSQUEEZE: step must be non-zero"
);
new_lens
[
i
]
=
step
;
if
(
p
<
old_strides
.
size
())
{
if
((
old_lens
[
p
]
%
step
)
!=
0
)
MIGRAPHX_THROW
(
"UNSQUEEZE: Axis dimenstion is not divisible by step"
);
old_lens
[
p
]
/=
step
;
new_strides
[
i
]
=
old_strides
[
p
]
*
old_lens
[
p
];
}
else
{
if
(
step
!=
1
)
MIGRAPHX_THROW
(
"UNSQUEEZE: Step must be 1 for extra axes"
);
new_strides
[
i
]
=
1
;
}
}
}
else
else
{
{
if
(
step
!=
1
)
new_lens
[
i
]
=
old_lens
[
p
];
MIGRAPHX_THROW
(
"UNSQUEEZE: Step must be 1 for extra axes"
);
new_strides
[
i
]
=
old_strides
[
p
++
];
new_strides
[
i
]
=
1
;
}
}
}
}
else
return
shape
{
type
,
new_lens
,
new_strides
};
{
new_lens
[
i
]
=
old_lens
[
p
];
new_strides
[
i
]
=
old_strides
[
p
++
];
}
}
}
return
shape
{
type
,
new_lens
,
new_strides
};
}
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
{
return
args
[
0
].
reshape
(
out
put_shape
);
return
args
[
0
].
reshape
(
dyn_out
.
com
put
ed
_shape
);
}
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
};
...
...
src/include/migraphx/program.hpp
View file @
25e8cf0b
...
@@ -115,6 +115,7 @@ struct program
...
@@ -115,6 +115,7 @@ struct program
print_func
)
const
;
print_func
)
const
;
void
print_graph
(
std
::
ostream
&
os
,
bool
brief
=
false
)
const
;
void
print_graph
(
std
::
ostream
&
os
,
bool
brief
=
false
)
const
;
void
print_py
(
std
::
ostream
&
os
)
const
;
void
print_cpp
(
std
::
ostream
&
os
)
const
;
void
print_cpp
(
std
::
ostream
&
os
)
const
;
void
dry_run
(
parameter_map
params
)
const
;
void
dry_run
(
parameter_map
params
)
const
;
...
...
src/include/migraphx/shape.hpp
View file @
25e8cf0b
...
@@ -101,6 +101,19 @@ struct shape
...
@@ -101,6 +101,19 @@ struct shape
friend
bool
operator
==
(
const
dynamic_dimension
&
x
,
const
dynamic_dimension
&
y
);
friend
bool
operator
==
(
const
dynamic_dimension
&
x
,
const
dynamic_dimension
&
y
);
friend
bool
operator
!=
(
const
dynamic_dimension
&
x
,
const
dynamic_dimension
&
y
);
friend
bool
operator
!=
(
const
dynamic_dimension
&
x
,
const
dynamic_dimension
&
y
);
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
dynamic_dimension
&
x
);
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
dynamic_dimension
&
x
);
// compare to fixed std::size_t dimension
friend
bool
operator
==
(
const
dynamic_dimension
&
x
,
const
std
::
size_t
&
y
);
friend
bool
operator
==
(
const
std
::
size_t
&
x
,
const
dynamic_dimension
&
y
);
friend
bool
operator
!=
(
const
dynamic_dimension
&
x
,
const
std
::
size_t
&
y
);
friend
bool
operator
!=
(
const
std
::
size_t
&
x
,
const
dynamic_dimension
&
y
);
// add and subtract fixed std::size_t dimension
dynamic_dimension
&
operator
+=
(
const
std
::
size_t
&
x
);
dynamic_dimension
&
operator
-=
(
const
std
::
size_t
&
x
);
friend
dynamic_dimension
operator
+
(
const
dynamic_dimension
&
x
,
const
std
::
size_t
&
y
);
friend
dynamic_dimension
operator
+
(
const
std
::
size_t
&
x
,
const
dynamic_dimension
&
y
);
friend
dynamic_dimension
operator
-
(
const
dynamic_dimension
&
x
,
const
std
::
size_t
&
y
);
};
};
static
const
std
::
vector
<
type_t
>&
types
();
static
const
std
::
vector
<
type_t
>&
types
();
...
...
src/include/migraphx/shape_for_each.hpp
View file @
25e8cf0b
...
@@ -31,6 +31,9 @@
...
@@ -31,6 +31,9 @@
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
/**
* Iterates the given function over the indices from the shape in order.
*/
template
<
class
F
>
template
<
class
F
>
void
shape_for_each
(
const
migraphx
::
shape
&
s
,
F
f
)
void
shape_for_each
(
const
migraphx
::
shape
&
s
,
F
f
)
{
{
...
@@ -51,7 +54,6 @@ void shape_for_each(const migraphx::shape& s, F f)
...
@@ -51,7 +54,6 @@ void shape_for_each(const migraphx::shape& s, F f)
call
(
indices
);
call
(
indices
);
}
}
}
}
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
}
// namespace migraphx
...
...
src/insert_pad.cpp
View file @
25e8cf0b
...
@@ -77,14 +77,14 @@ static void update_pooling(const instruction_ref& input, const instruction_ref&
...
@@ -77,14 +77,14 @@ static void update_pooling(const instruction_ref& input, const instruction_ref&
{
{
return
;
return
;
}
}
auto
kdims
=
input
->
get_shape
().
lens
().
size
()
-
2
;
auto
kdims
=
input
->
get_shape
().
ndim
()
-
2
;
if
(
std
::
equal
(
op
.
padding
.
begin
(),
if
(
std
::
equal
(
op
.
padding
.
begin
(),
op
.
padding
.
begin
()
+
kdims
,
op
.
padding
.
begin
()
+
kdims
,
op
.
padding
.
begin
()
+
kdims
,
op
.
padding
.
begin
()
+
kdims
,
op
.
padding
.
end
()))
op
.
padding
.
end
()))
return
;
return
;
std
::
vector
<
int64_t
>
padding
(
input
->
get_shape
().
lens
().
size
()
*
2
,
0
);
std
::
vector
<
int64_t
>
padding
(
input
->
get_shape
().
ndim
()
*
2
,
0
);
std
::
vector
<
size_t
>
pads_l
(
op
.
padding
.
begin
(),
op
.
padding
.
begin
()
+
kdims
);
std
::
vector
<
size_t
>
pads_l
(
op
.
padding
.
begin
(),
op
.
padding
.
begin
()
+
kdims
);
std
::
vector
<
size_t
>
pads_r
(
op
.
padding
.
begin
()
+
kdims
,
op
.
padding
.
end
());
std
::
vector
<
size_t
>
pads_r
(
op
.
padding
.
begin
()
+
kdims
,
op
.
padding
.
end
());
op
.
padding
=
std
::
vector
<
size_t
>
(
kdims
*
2
,
0
);
op
.
padding
=
std
::
vector
<
size_t
>
(
kdims
*
2
,
0
);
...
...
src/instruction.cpp
View file @
25e8cf0b
...
@@ -302,6 +302,24 @@ void instruction::replace_mod_argument(module_ref old, module_ref new_mod)
...
@@ -302,6 +302,24 @@ void instruction::replace_mod_argument(module_ref old, module_ref new_mod)
std
::
replace
(
module_args
.
begin
(),
module_args
.
end
(),
old
,
new_mod
);
std
::
replace
(
module_args
.
begin
(),
module_args
.
end
(),
old
,
new_mod
);
}
}
bool
instruction
::
is_undefined
()
const
{
if
(
op
.
name
()
==
"undefined"
)
{
return
true
;
}
else
if
(
this
->
inputs
().
empty
())
{
return
false
;
}
else
{
return
std
::
all_of
(
this
->
inputs
().
begin
(),
this
->
inputs
().
end
(),
[](
auto
arg
)
{
return
arg
->
is_undefined
();
});
}
}
bool
instruction
::
can_eval
()
const
bool
instruction
::
can_eval
()
const
{
{
if
(
op
.
name
()
==
"@literal"
)
if
(
op
.
name
()
==
"@literal"
)
...
...
src/module.cpp
View file @
25e8cf0b
...
@@ -789,6 +789,22 @@ static std::string cpp_var_name(const std::string& name)
...
@@ -789,6 +789,22 @@ static std::string cpp_var_name(const std::string& name)
return
to_c_id
(
"x_"
+
replace_string
(
name
,
":"
,
"_module_"
));
return
to_c_id
(
"x_"
+
replace_string
(
name
,
":"
,
"_module_"
));
}
}
static
void
print_py_op
(
std
::
ostream
&
os
,
const
operation
&
op
)
{
auto
v
=
op
.
to_value
();
os
<<
"migraphx.op("
<<
enclose_name
(
op
.
name
());
auto
default_values
=
make_op
(
op
.
name
()).
to_value
();
for
(
auto
&&
x
:
v
)
{
auto
name
=
x
.
get_key
();
if
(
default_values
[
name
]
==
x
)
continue
;
os
<<
", "
<<
name
<<
"="
<<
to_json_string
(
x
.
without_key
());
}
os
<<
")"
;
}
static
void
print_make_op
(
std
::
ostream
&
os
,
const
operation
&
op
)
static
void
print_make_op
(
std
::
ostream
&
os
,
const
operation
&
op
)
{
{
auto
v
=
op
.
to_value
();
auto
v
=
op
.
to_value
();
...
@@ -804,6 +820,15 @@ static void print_make_op(std::ostream& os, const operation& op)
...
@@ -804,6 +820,15 @@ static void print_make_op(std::ostream& os, const operation& op)
os
<<
")"
;
os
<<
")"
;
}
}
static
void
print_py_shape
(
std
::
ostream
&
os
,
const
migraphx
::
shape
&
s
)
{
os
<<
"migraphx.shape(type="
<<
to_json_string
(
s
.
type_string
())
<<
", lens="
<<
to_json_string
(
s
.
lens
());
if
(
not
s
.
standard
())
os
<<
", strides="
<<
to_json_string
(
s
.
strides
());
os
<<
")"
;
}
static
void
print_cpp_shape
(
std
::
ostream
&
os
,
const
migraphx
::
shape
&
s
)
static
void
print_cpp_shape
(
std
::
ostream
&
os
,
const
migraphx
::
shape
&
s
)
{
{
os
<<
"migraphx::shape{migraphx::shape::"
<<
s
.
type_string
();
os
<<
"migraphx::shape{migraphx::shape::"
<<
s
.
type_string
();
...
@@ -813,6 +838,68 @@ static void print_cpp_shape(std::ostream& os, const migraphx::shape& s)
...
@@ -813,6 +838,68 @@ static void print_cpp_shape(std::ostream& os, const migraphx::shape& s)
os
<<
"}"
;
os
<<
"}"
;
}
}
std
::
unordered_map
<
instruction_ref
,
std
::
string
>
module
::
print_py
(
std
::
ostream
&
os
,
const
std
::
string
&
mname
,
std
::
unordered_map
<
instruction_ref
,
std
::
string
>
names
)
const
{
// cppcheck-suppress variableScope
unsigned
long
seed
=
names
.
size
();
auto
last
=
std
::
prev
(
this
->
end
());
names
=
this
->
print
(
[
&
](
auto
ins
,
auto
ins_names
)
{
std
::
vector
<
std
::
string
>
input_vars
;
std
::
transform
(
ins
->
inputs
().
begin
(),
ins
->
inputs
().
end
(),
std
::
back_inserter
(
input_vars
),
[
&
](
auto
input
)
{
return
cpp_var_name
(
ins_names
.
at
(
input
));
});
if
(
ins
!=
last
)
os
<<
cpp_var_name
(
ins_names
.
at
(
ins
))
<<
" = "
;
if
(
ins
->
name
()
==
"@literal"
)
{
os
<<
mname
<<
".add_literal("
;
bool
use_abs
=
false
;
ins
->
get_literal
().
visit
([
&
](
auto
v
)
{
use_abs
=
std
::
none_of
(
v
.
begin
(),
v
.
end
(),
[](
auto
x
)
{
return
x
<
0
;
});
});
// Disable abs for now
use_abs
=
false
;
if
(
use_abs
)
os
<<
"migraphx.abs_literal("
;
os
<<
"migraphx.generate_literal("
;
print_py_shape
(
os
,
ins
->
get_shape
());
os
<<
", "
<<
seed
<<
")"
;
if
(
use_abs
)
os
<<
")"
;
os
<<
")"
<<
std
::
endl
;
seed
++
;
}
else
if
(
ins
->
name
()
==
"@param"
)
{
std
::
string
name
=
any_cast
<
builtin
::
param
>
(
ins
->
get_operator
()).
parameter
;
os
<<
mname
<<
".add_parameter("
<<
enclose_name
(
name
)
<<
","
;
print_py_shape
(
os
,
ins
->
get_shape
());
os
<<
")"
<<
std
::
endl
;
}
else
if
(
ins
->
name
()
==
"@return"
)
{
os
<<
mname
<<
".add_return(["
<<
join_strings
(
input_vars
,
", "
)
<<
"])"
<<
std
::
endl
;
}
else
{
assert
(
ins
->
name
().
front
()
!=
'@'
);
os
<<
mname
<<
".add_instruction("
;
print_py_op
(
os
,
ins
->
get_operator
());
os
<<
", ["
<<
join_strings
(
input_vars
,
", "
)
<<
"]"
;
os
<<
")"
<<
std
::
endl
;
}
},
names
);
return
names
;
}
std
::
unordered_map
<
instruction_ref
,
std
::
string
>
std
::
unordered_map
<
instruction_ref
,
std
::
string
>
module
::
print_cpp
(
std
::
ostream
&
os
,
module
::
print_cpp
(
std
::
ostream
&
os
,
const
std
::
string
&
mname
,
const
std
::
string
&
mname
,
...
@@ -874,6 +961,8 @@ module::print_cpp(std::ostream& os,
...
@@ -874,6 +961,8 @@ module::print_cpp(std::ostream& os,
return
names
;
return
names
;
}
}
void
module
::
print_py
(
std
::
ostream
&
os
)
const
{
this
->
print_py
(
os
,
this
->
name
(),
{});
}
void
module
::
print_cpp
(
std
::
ostream
&
os
)
const
{
this
->
print_cpp
(
os
,
this
->
name
(),
{});
}
void
module
::
print_cpp
(
std
::
ostream
&
os
)
const
{
this
->
print_cpp
(
os
,
this
->
name
(),
{});
}
void
module
::
annotate
(
std
::
ostream
&
os
,
std
::
function
<
void
(
instruction_ref
)
>
a
)
const
void
module
::
annotate
(
std
::
ostream
&
os
,
std
::
function
<
void
(
instruction_ref
)
>
a
)
const
...
...
src/onnx/onnx_parser.cpp
View file @
25e8cf0b
...
@@ -110,9 +110,19 @@ instruction_ref onnx_parser::node_info::add_bias(const std::vector<instruction_r
...
@@ -110,9 +110,19 @@ instruction_ref onnx_parser::node_info::add_bias(const std::vector<instruction_r
{
{
if
(
args
.
size
()
==
3
)
if
(
args
.
size
()
==
3
)
{
{
auto
bias_bcast
=
mod
->
add_instruction
(
instruction_ref
bias_bcast
;
make_op
(
"broadcast"
,
{{
"axis"
,
axis
},
{
"out_lens"
,
curr_ins
->
get_shape
().
lens
()}}),
// if curr_ins has a dynamic output shape use 2 input broadcast
args
[
2
]);
if
(
curr_ins
->
get_shape
().
dynamic
())
{
bias_bcast
=
mod
->
add_instruction
(
make_op
(
"broadcast"
,
{{
"axis"
,
axis
}}),
args
[
2
],
curr_ins
);
}
else
{
bias_bcast
=
mod
->
add_instruction
(
make_op
(
"broadcast"
,
{{
"axis"
,
axis
},
{
"out_lens"
,
curr_ins
->
get_shape
().
lens
()}}),
args
[
2
]);
}
return
mod
->
add_instruction
(
make_op
(
"add"
),
curr_ins
,
bias_bcast
);
return
mod
->
add_instruction
(
make_op
(
"add"
),
curr_ins
,
bias_bcast
);
}
}
return
curr_ins
;
return
curr_ins
;
...
@@ -393,18 +403,31 @@ literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
...
@@ -393,18 +403,31 @@ literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
literal
onnx_parser
::
parse_tensor
(
const
onnx
::
TensorProto
&
t
)
const
literal
onnx_parser
::
parse_tensor
(
const
onnx
::
TensorProto
&
t
)
const
{
{
std
::
vector
<
std
::
size_t
>
dims
(
t
.
dims
().
begin
(),
t
.
dims
().
end
());
std
::
vector
<
std
::
size_t
>
dims
(
t
.
dims
().
begin
(),
t
.
dims
().
end
());
if
(
not
t
.
external_data
().
empty
())
auto
type
=
get_type
(
t
.
data_type
());
shape
tensor_shape
(
type
,
dims
);
auto
external_data
=
t
.
external_data
();
if
(
not
external_data
.
empty
())
{
{
const
std
::
string
&
data_file
=
t
.
external_data
().
at
(
0
).
value
();
const
std
::
string
&
data_file
=
external_data
.
at
(
0
).
value
();
auto
raw_buffer
=
read_buffer
(
path
+
"/"
+
data_file
);
size_t
num_data_fields
=
external_data
.
size
();
size_t
offset
=
0
;
size_t
nbytes
=
tensor_shape
.
bytes
();
if
(
num_data_fields
>
1
)
// if offset field is present
{
offset
=
std
::
stoul
(
t
.
external_data
().
at
(
1
).
value
());
}
if
(
num_data_fields
>
2
)
// if nbytes field is present
{
nbytes
=
std
::
stoul
(
t
.
external_data
().
at
(
2
).
value
());
}
auto
raw_buffer
=
read_buffer
(
path
+
"/"
+
data_file
,
offset
,
nbytes
);
std
::
string
s
(
raw_buffer
.
begin
(),
raw_buffer
.
end
());
std
::
string
s
(
raw_buffer
.
begin
(),
raw_buffer
.
end
());
auto
type
=
get_type
(
t
.
data_type
());
return
create_literal
(
type
,
dims
,
s
.
data
());
return
create_literal
(
type
,
dims
,
s
.
data
());
}
}
if
(
t
.
has_raw_data
())
if
(
t
.
has_raw_data
())
{
{
const
std
::
string
&
s
=
t
.
raw_data
();
const
std
::
string
&
s
=
t
.
raw_data
();
auto
type
=
get_type
(
t
.
data_type
());
return
create_literal
(
type
,
dims
,
s
.
data
());
return
create_literal
(
type
,
dims
,
s
.
data
());
}
}
...
...
src/onnx/parse_gemm.cpp
View file @
25e8cf0b
...
@@ -39,10 +39,19 @@ struct parse_gemm : op_parser<parse_gemm>
...
@@ -39,10 +39,19 @@ struct parse_gemm : op_parser<parse_gemm>
onnx_parser
::
node_info
info
,
onnx_parser
::
node_info
info
,
std
::
vector
<
instruction_ref
>
args
)
const
std
::
vector
<
instruction_ref
>
args
)
const
{
{
float
alpha
=
1.0
f
;
auto
a_arg
=
args
[
0
];
float
beta
=
1.0
f
;
auto
b_arg
=
args
[
1
];
bool
transa
=
false
;
if
(
a_arg
->
get_shape
().
ndim
()
!=
2
or
b_arg
->
get_shape
().
ndim
()
!=
2
)
bool
transb
=
false
;
{
MIGRAPHX_THROW
(
"PARSE_GEMM: A and B should be rank 2, A is rank "
+
std
::
to_string
(
a_arg
->
get_shape
().
ndim
())
+
", B is rank "
+
std
::
to_string
(
b_arg
->
get_shape
().
ndim
()));
}
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
bool
trans_a
=
false
;
bool
trans_b
=
false
;
if
(
contains
(
info
.
attributes
,
"alpha"
))
if
(
contains
(
info
.
attributes
,
"alpha"
))
{
{
alpha
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"alpha"
)).
at
<
float
>
();
alpha
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"alpha"
)).
at
<
float
>
();
...
@@ -53,65 +62,73 @@ struct parse_gemm : op_parser<parse_gemm>
...
@@ -53,65 +62,73 @@ struct parse_gemm : op_parser<parse_gemm>
}
}
if
(
contains
(
info
.
attributes
,
"transA"
))
if
(
contains
(
info
.
attributes
,
"transA"
))
{
{
transa
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"transA"
)).
at
<
bool
>
();
trans
_
a
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"transA"
)).
at
<
bool
>
();
}
}
if
(
contains
(
info
.
attributes
,
"transB"
))
if
(
contains
(
info
.
attributes
,
"transB"
))
{
{
transb
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"transB"
)).
at
<
bool
>
();
trans
_
b
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"transB"
)).
at
<
bool
>
();
}
}
std
::
vector
<
int64_t
>
perm
(
args
[
0
]
->
get_shape
().
lens
().
size
());
std
::
vector
<
int64_t
>
perm
=
{
1
,
0
};
std
::
iota
(
perm
.
begin
(),
perm
.
end
(),
int64_t
{
0
});
auto
dot_type
=
a_arg
->
get_shape
().
type
();
// swap the last two elements
std
::
swap
(
*
perm
.
rbegin
(),
*
(
perm
.
rbegin
()
+
1
));
auto
l1
=
args
[
0
];
auto
dot_type
=
l1
->
get_shape
().
type
();
if
(
alpha
!=
1.0
f
)
if
(
alpha
!=
1.0
f
)
{
{
auto
alpha_literal
=
info
.
add_literal
(
alpha
);
auto
alpha_literal
=
info
.
add_literal
(
alpha
);
l1
=
info
.
add_broadcastable_binary_op
(
"mul"
,
alpha_literal
,
l1
);
a_arg
=
info
.
add_broadcastable_binary_op
(
"mul"
,
alpha_literal
,
a_arg
);
if
(
l1
->
get_shape
().
type
()
!=
dot_type
)
if
(
a_arg
->
get_shape
().
type
()
!=
dot_type
)
{
{
l1
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
dot_type
}}),
l1
);
a_arg
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
dot_type
}}),
a_arg
);
}
}
}
}
l1
=
a_arg
=
(
trans_a
)
(
transa
)
?
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm
}}),
l1
)
:
l1
;
?
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm
}}),
a_arg
)
auto
l2
=
(
transb
)
:
a_arg
;
?
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm
}}),
args
[
1
])
b_arg
=
(
trans_b
)
:
args
[
1
];
?
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm
}}),
args
[
1
])
:
args
[
1
];
auto
ret
=
info
.
add_instruction
(
make_op
(
"dot"
),
l1
,
l2
);
auto
dot_ins
=
info
.
add_instruction
(
make_op
(
"dot"
),
a_arg
,
b_arg
);
if
(
args
.
size
()
==
3
)
if
(
args
.
size
()
==
3
)
{
{
if
(
not
float_equal
(
beta
,
0.0
f
)
&&
args
[
2
]
->
get_shape
().
elements
()
>
0
)
if
(
not
float_equal
(
beta
,
0.0
f
))
{
{
auto
out_lens
=
l1
->
get_shape
().
lens
();
auto
c_arg
=
args
[
2
];
out_lens
.
back
()
=
l2
->
get_shape
().
lens
().
back
();
if
(
dot_ins
->
get_shape
().
dynamic
())
auto
l3
=
args
[
2
];
auto
l3_lens
=
l3
->
get_shape
().
lens
();
if
(
not
std
::
equal
(
out_lens
.
begin
(),
out_lens
.
end
(),
l3_lens
.
begin
(),
l3_lens
.
end
()))
{
{
l3
=
info
.
add_instruction
(
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
out_lens
}}),
c_arg
=
info
.
add_instruction
(
make_op
(
"multibroadcast"
),
args
[
2
],
dot_ins
);
args
[
2
]);
}
}
auto
beta_literal
=
info
.
add_literal
(
beta
);
else
auto
beta_l3
=
info
.
add_broadcastable_binary_op
(
"mul"
,
l3
,
beta_literal
);
if
(
beta_l3
->
get_shape
().
type
()
!=
dot_type
)
{
{
beta_l3
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
dot_type
}}),
auto
out_lens
=
a_arg
->
get_shape
().
lens
();
beta_l3
);
out_lens
.
back
()
=
b_arg
->
get_shape
().
lens
().
back
();
auto
c_lens
=
c_arg
->
get_shape
().
lens
();
if
(
not
std
::
equal
(
out_lens
.
begin
(),
out_lens
.
end
(),
c_lens
.
begin
(),
c_lens
.
end
()))
{
c_arg
=
info
.
add_instruction
(
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
out_lens
}}),
args
[
2
]);
}
}
}
return
info
.
add_instruction
(
make_op
(
"add"
),
ret
,
beta_l3
);
if
(
not
float_equal
(
beta
,
1.0
f
))
{
auto
beta_literal
=
info
.
add_literal
(
beta
);
c_arg
=
info
.
add_broadcastable_binary_op
(
"mul"
,
c_arg
,
beta_literal
);
if
(
c_arg
->
get_shape
().
type
()
!=
dot_type
)
{
c_arg
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
dot_type
}}),
c_arg
);
}
}
return
info
.
add_instruction
(
make_op
(
"add"
),
dot_ins
,
c_arg
);
}
}
}
}
return
dot_ins
;
return
ret
;
}
}
};
};
...
...
src/onnx/parse_matmul.cpp
View file @
25e8cf0b
...
@@ -43,55 +43,79 @@ struct parse_matmul : op_parser<parse_matmul>
...
@@ -43,55 +43,79 @@ struct parse_matmul : op_parser<parse_matmul>
const
onnx_parser
::
node_info
&
info
,
const
onnx_parser
::
node_info
&
info
,
std
::
vector
<
instruction_ref
>
args
)
const
std
::
vector
<
instruction_ref
>
args
)
const
{
{
auto
l0
=
args
[
0
];
auto
a0
=
args
[
0
];
auto
l1
=
args
[
1
];
auto
a1
=
args
[
1
];
auto
l0_len
s
=
l
0
->
get_shape
()
.
lens
()
;
auto
s
0
=
a
0
->
get_shape
();
auto
l1_len
s
=
l
1
->
get_shape
()
.
lens
()
;
auto
s
1
=
a
1
->
get_shape
();
// args[0] is a vector, prepend 1 to the shape
instruction_ref
dot_res
;
bool
is_a_prepended
=
false
;
bool
is_a_prepended
=
false
;
if
(
l0_lens
.
size
()
==
1
)
bool
is_b_appended
=
false
;
if
(
s0
.
ndim
()
==
1
)
{
{
is_a_prepended
=
true
;
is_a_prepended
=
true
;
l0_lens
.
insert
(
l0_lens
.
begin
(),
1
);
a0
=
info
.
add_instruction
(
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
0
}}}),
args
[
0
]);
l0
=
info
.
add_instruction
(
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
0
}}}),
args
[
0
]);
}
}
if
(
s1
.
ndim
()
==
1
)
bool
is_b_appended
=
false
;
if
(
l1_lens
.
size
()
==
1
)
{
{
is_b_appended
=
true
;
is_b_appended
=
true
;
l1_lens
.
push_back
(
1
);
a1
=
info
.
add_instruction
(
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
}}}),
args
[
1
]);
l1
=
info
.
add_instruction
(
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
}}}),
args
[
1
]);
}
}
instruction_ref
bl0
=
l0
;
if
(
s0
.
dynamic
()
or
s1
.
dynamic
())
instruction_ref
bl1
=
l1
;
if
(
not
std
::
equal
(
l0_lens
.
rbegin
()
+
2
,
l0_lens
.
rend
(),
l1_lens
.
rbegin
()
+
2
,
l1_lens
.
rend
()))
{
{
auto
l0_it
=
l0_lens
.
begin
()
+
l0_lens
.
size
()
-
2
;
if
(
opd
.
op_name
==
"quant_dot"
)
std
::
vector
<
std
::
size_t
>
l0_broadcasted_lens
(
l0_lens
.
begin
(),
l0_it
);
{
auto
l1_it
=
l1_lens
.
begin
()
+
l1_lens
.
size
()
-
2
;
MIGRAPHX_THROW
(
"PARSE_MATMUL: dynamic MatMulInteger not supported"
)
;
std
::
vector
<
std
::
size_t
>
l1_broadcasted_lens
(
l1_lens
.
begin
(),
l1_it
);
}
auto
output_lens
=
compute_broadcasted_lens
(
l0_broadcasted_lens
,
l1_broadcasted_lens
);
auto
s0_dds
=
a0
->
get_shape
().
to_dynamic
().
dyn_dims
(
);
l0_broadcasted_lens
=
output_lens
;
auto
s1_dds
=
a1
->
get_shape
().
to_dynamic
().
dyn_dims
()
;
l0_broadcasted_lens
.
insert
(
l0_broadcasted_lens
.
end
(),
l0_it
,
l0_lens
.
end
());
l1_broadcasted_lens
=
output_lens
;
// TODO: handling this case requires a new multibroadcast mode
l1_broadcasted_lens
.
insert
(
l1_broadcasted_lens
.
end
(),
l1_it
,
l1_lens
.
end
());
if
(
not
std
::
equal
(
if
(
l0_lens
!=
l0_broadcasted_lens
)
s0_dds
.
rbegin
()
+
2
,
s0_dds
.
rend
(),
s1_dds
.
rbegin
()
+
2
,
s1_dds
.
rend
())
)
{
{
bl0
=
info
.
add_instruction
(
MIGRAPHX_THROW
(
"PARSE_MATMUL: dynamic shape broadcasting not supported"
);
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
l0_broadcasted_lens
}}),
l0
);
}
}
if
(
l1_lens
!=
l1_broadcasted_lens
)
dot_res
=
info
.
add_instruction
(
make_op
(
opd
.
op_name
),
a0
,
a1
);
}
else
{
auto
s0_lens
=
a0
->
get_shape
().
lens
();
auto
s1_lens
=
a1
->
get_shape
().
lens
();
instruction_ref
ba0
=
a0
;
instruction_ref
ba1
=
a1
;
// try broadcasting if dimensions other than last two do not match
if
(
not
std
::
equal
(
s0_lens
.
rbegin
()
+
2
,
s0_lens
.
rend
(),
s1_lens
.
rbegin
()
+
2
,
s1_lens
.
rend
()))
{
{
bl1
=
info
.
add_instruction
(
auto
l0_it
=
s0_lens
.
begin
()
+
s0_lens
.
size
()
-
2
;
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
l1_broadcasted_lens
}}),
l1
);
std
::
vector
<
std
::
size_t
>
l0_broadcasted_lens
(
s0_lens
.
begin
(),
l0_it
);
auto
l1_it
=
s1_lens
.
begin
()
+
s1_lens
.
size
()
-
2
;
std
::
vector
<
std
::
size_t
>
l1_broadcasted_lens
(
s1_lens
.
begin
(),
l1_it
);
auto
output_lens
=
compute_broadcasted_lens
(
l0_broadcasted_lens
,
l1_broadcasted_lens
);
l0_broadcasted_lens
=
output_lens
;
l0_broadcasted_lens
.
insert
(
l0_broadcasted_lens
.
end
(),
l0_it
,
s0_lens
.
end
());
l1_broadcasted_lens
=
output_lens
;
l1_broadcasted_lens
.
insert
(
l1_broadcasted_lens
.
end
(),
l1_it
,
s1_lens
.
end
());
if
(
s0_lens
!=
l0_broadcasted_lens
)
{
ba0
=
info
.
add_instruction
(
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
l0_broadcasted_lens
}}),
a0
);
}
if
(
s1_lens
!=
l1_broadcasted_lens
)
{
ba1
=
info
.
add_instruction
(
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
l1_broadcasted_lens
}}),
a1
);
}
}
}
dot_res
=
info
.
add_instruction
(
make_op
(
opd
.
op_name
),
ba0
,
ba1
);
}
}
instruction_ref
dot_res
=
info
.
add_instruction
(
make_op
(
opd
.
op_name
),
bl0
,
bl1
);
int64_t
num_axis
=
static_cast
<
int64_t
>
(
dot_res
->
get_shape
().
lens
().
size
());
// squeeze the appended or prepended dimensions
int64_t
num_axis
=
dot_res
->
get_shape
().
ndim
();
if
(
is_a_prepended
)
if
(
is_a_prepended
)
{
{
dot_res
=
info
.
add_instruction
(
make_op
(
"squeeze"
,
{{
"axes"
,
{
num_axis
-
2
}}}),
dot_res
);
dot_res
=
info
.
add_instruction
(
make_op
(
"squeeze"
,
{{
"axes"
,
{
num_axis
-
2
}}}),
dot_res
);
...
...
src/onnx/parse_pad.cpp
View file @
25e8cf0b
...
@@ -147,7 +147,13 @@ struct parse_pad : op_parser<parse_pad>
...
@@ -147,7 +147,13 @@ struct parse_pad : op_parser<parse_pad>
{
{
auto
mode
=
info
.
attributes
.
at
(
"mode"
).
s
();
auto
mode
=
info
.
attributes
.
at
(
"mode"
).
s
();
if
(
mode
==
"reflect"
)
if
(
mode
==
"reflect"
)
{
if
(
args
.
front
()
->
get_shape
().
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_PAD: reflect padding with dynamic shape not supported"
);
}
return
reflect_pad
(
info
,
pads
,
args
.
front
());
return
reflect_pad
(
info
,
pads
,
args
.
front
());
}
if
(
mode
!=
"constant"
)
if
(
mode
!=
"constant"
)
{
{
MIGRAPHX_THROW
(
MIGRAPHX_THROW
(
...
...
src/onnx/parse_pooling.cpp
View file @
25e8cf0b
...
@@ -47,52 +47,42 @@ struct parse_pooling : op_parser<parse_pooling>
...
@@ -47,52 +47,42 @@ struct parse_pooling : op_parser<parse_pooling>
{
"GlobalLpPool"
,
"lpnorm"
}};
{
"GlobalLpPool"
,
"lpnorm"
}};
}
}
instruction_ref
parse
(
const
op_desc
&
opd
,
value
handle_values
(
const
op_desc
&
opd
,
const
onnx_parser
&
/*parser*/
,
onnx_parser
::
node_info
info
,
onnx_parser
::
node_info
info
,
const
shape
&
in_shape
,
std
::
vector
<
instruction_ref
>
arg
s
)
const
value
value
s
)
const
{
{
const
std
::
unordered_map
<
std
::
string
,
op
::
pooling_mode
>
mode_map
=
{
auto
kdims
=
in_shape
.
ndim
()
-
2
;
{
"max"
,
op
::
pooling_mode
::
max
},
{
"average"
,
op
::
pooling_mode
::
average
},
{
"lpnorm"
,
op
::
pooling_mode
::
lpnorm
}};
std
::
string
mode
=
opd
.
op_name
;
if
(
not
contains
(
mode_map
,
mode
))
{
MIGRAPHX_THROW
(
"onnx pooling mode must be [
\"
max
\"
,
\"
average
\"
,
\"
lpnorm
\"
]"
);
}
operation
op
=
make_op
(
"pooling"
,
{{
"mode"
,
mode_map
.
at
(
mode
)}});
value
values
=
op
.
to_value
();
auto
l0
=
args
[
0
];
auto
in_lens
=
l0
->
get_shape
().
lens
();
assert
(
in_lens
.
size
()
>
2
);
auto
kdims
=
in_lens
.
size
()
-
2
;
if
(
starts_with
(
opd
.
onnx_name
,
"Global"
))
if
(
starts_with
(
opd
.
onnx_name
,
"Global"
))
{
{
values
[
"lengths"
]
=
std
::
vector
<
size_t
>
(
in_lens
.
begin
()
+
2
,
in_lens
.
end
());
// if spatial dimensions are dynamic use dyn_global flag
if
(
in_shape
.
dynamic
()
and
std
::
any_of
(
in_shape
.
dyn_dims
().
cbegin
()
+
2
,
in_shape
.
dyn_dims
().
cend
(),
[](
auto
dd
)
{
return
not
dd
.
is_fixed
();
}))
{
values
[
"dyn_global"
]
=
true
;
values
[
"lengths"
]
=
std
::
vector
<
size_t
>
();
}
else
{
// works with static and fixed dynamic shape
auto
m_lens
=
in_shape
.
max_lens
();
values
[
"lengths"
]
=
std
::
vector
<
size_t
>
(
m_lens
.
begin
()
+
2
,
m_lens
.
end
());
}
}
}
// does not support ceil_mode
if
(
contains
(
info
.
attributes
,
"ceil_mode"
))
if
(
contains
(
info
.
attributes
,
"ceil_mode"
))
{
{
values
[
"ceil_mode"
]
=
static_cast
<
bool
>
(
info
.
attributes
.
at
(
"ceil_mode"
).
i
());
values
[
"ceil_mode"
]
=
static_cast
<
bool
>
(
info
.
attributes
.
at
(
"ceil_mode"
).
i
());
}
}
// count include padding, if count include pad is 1, we always use
// explicit pad
int
count_include_pad
=
0
;
if
(
contains
(
info
.
attributes
,
"count_include_pad"
))
{
count_include_pad
=
info
.
attributes
.
at
(
"count_include_pad"
).
i
();
}
if
(
contains
(
info
.
attributes
,
"strides"
))
if
(
contains
(
info
.
attributes
,
"strides"
))
{
{
values
[
"stride"
].
clear
();
values
[
"stride"
].
clear
();
copy
(
info
.
attributes
[
"strides"
].
ints
(),
std
::
back_inserter
(
values
[
"stride"
]));
copy
(
info
.
attributes
[
"strides"
].
ints
(),
std
::
back_inserter
(
values
[
"stride"
]));
check_attr_sizes
(
kdims
,
values
[
"stride"
].
size
(),
"PARSE_POOLING: inconsistent strides"
);
check_attr_sizes
(
kdims
,
values
[
"stride"
].
size
(),
"PARSE_POOLING: inconsistent strides"
);
}
}
if
(
contains
(
info
.
attributes
,
"kernel_shape"
))
if
(
contains
(
info
.
attributes
,
"kernel_shape"
))
{
{
values
[
"lengths"
].
clear
();
values
[
"lengths"
].
clear
();
...
@@ -110,6 +100,46 @@ struct parse_pooling : op_parser<parse_pooling>
...
@@ -110,6 +100,46 @@ struct parse_pooling : op_parser<parse_pooling>
// ensure pads availabe only when auto_pad is "NOT_SET"
// ensure pads availabe only when auto_pad is "NOT_SET"
check_padding_mode
(
info
,
"POOLING"
);
check_padding_mode
(
info
,
"POOLING"
);
return
values
;
}
instruction_ref
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
/*parser*/
,
onnx_parser
::
node_info
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
std
::
string
mode
=
opd
.
op_name
;
const
std
::
unordered_map
<
std
::
string
,
op
::
pooling_mode
>
mode_map
=
{
{
"max"
,
op
::
pooling_mode
::
max
},
{
"average"
,
op
::
pooling_mode
::
average
},
{
"lpnorm"
,
op
::
pooling_mode
::
lpnorm
}};
if
(
not
contains
(
mode_map
,
mode
))
{
MIGRAPHX_THROW
(
"PARSE_POOLING: onnx pooling mode must be [
\"
max
\"
,
\"
average
\"
,
\"
lpnorm
\"
]"
);
}
operation
op
=
make_op
(
"pooling"
,
{{
"mode"
,
mode_map
.
at
(
mode
)}});
value
values
=
op
.
to_value
();
auto
l0
=
args
[
0
];
auto
in_shape
=
l0
->
get_shape
();
assert
(
in_shape
.
ndim
()
>
2
);
auto
kdims
=
in_shape
.
ndim
()
-
2
;
values
=
handle_values
(
opd
,
info
,
in_shape
,
values
);
// count include padding, if count include pad is 1, we always use
// explicit pad
int
count_include_pad
=
0
;
if
(
contains
(
info
.
attributes
,
"count_include_pad"
))
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: count_include_pad attribute is not supported for "
"dynamic input shape"
);
}
count_include_pad
=
info
.
attributes
.
at
(
"count_include_pad"
).
i
();
}
std
::
vector
<
int64_t
>
paddings
;
std
::
vector
<
int64_t
>
paddings
;
float
pad_val
=
((
mode
==
"max"
)
?
std
::
numeric_limits
<
float
>::
lowest
()
:
0.0
f
);
float
pad_val
=
((
mode
==
"max"
)
?
std
::
numeric_limits
<
float
>::
lowest
()
:
0.0
f
);
...
@@ -123,14 +153,22 @@ struct parse_pooling : op_parser<parse_pooling>
...
@@ -123,14 +153,22 @@ struct parse_pooling : op_parser<parse_pooling>
if
(
contains
(
info
.
attributes
,
"auto_pad"
))
if
(
contains
(
info
.
attributes
,
"auto_pad"
))
{
{
values
[
"padding"
].
clear
();
if
(
in_shape
.
dynamic
())
// return paddings could be empty, then setting to 0 for no padding
{
cal_auto_padding_size
(
info
,
MIGRAPHX_THROW
(
values
,
"PARSE_POOLING: Auto padding pooling with dynamic input shape not supported"
);
values
[
"lengths"
].
to_vector
<
std
::
size_t
>
(),
}
{
1
,
1
},
else
in_lens
,
{
paddings
);
values
[
"padding"
].
clear
();
// return paddings could be empty, then setting to 0 for no padding
cal_auto_padding_size
(
info
,
values
,
values
[
"lengths"
].
to_vector
<
std
::
size_t
>
(),
{
1
,
1
},
in_shape
.
lens
(),
paddings
);
}
}
}
if
(
paddings
.
size
()
!=
2
*
kdims
)
if
(
paddings
.
size
()
!=
2
*
kdims
)
...
@@ -150,6 +188,7 @@ struct parse_pooling : op_parser<parse_pooling>
...
@@ -150,6 +188,7 @@ struct parse_pooling : op_parser<parse_pooling>
values
[
"stride"
].
resize
(
kdims
);
values
[
"stride"
].
resize
(
kdims
);
std
::
fill_n
(
values
[
"stride"
].
begin
(),
kdims
,
1
);
std
::
fill_n
(
values
[
"stride"
].
begin
(),
kdims
,
1
);
}
}
// used to calculate the supposed output shape
// used to calculate the supposed output shape
std
::
vector
<
int64_t
>
orig_padding
=
paddings
;
std
::
vector
<
int64_t
>
orig_padding
=
paddings
;
...
@@ -159,6 +198,11 @@ struct parse_pooling : op_parser<parse_pooling>
...
@@ -159,6 +198,11 @@ struct parse_pooling : op_parser<parse_pooling>
if
(
not
slice_start
.
empty
())
if
(
not
slice_start
.
empty
())
{
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: asymmetric padding not supported for dynamic input shape"
);
}
// calculate expected output shape
// calculate expected output shape
orig_padding
.
insert
(
orig_padding
.
begin
()
+
kdims
,
2
,
0
);
orig_padding
.
insert
(
orig_padding
.
begin
()
+
kdims
,
2
,
0
);
orig_padding
.
insert
(
orig_padding
.
begin
(),
2
,
0
);
orig_padding
.
insert
(
orig_padding
.
begin
(),
2
,
0
);
...
...
src/onnx/parse_reduce_op.cpp
View file @
25e8cf0b
...
@@ -68,8 +68,7 @@ instruction_ref parse_reduce_oper(const std::string& op_name,
...
@@ -68,8 +68,7 @@ instruction_ref parse_reduce_oper(const std::string& op_name,
}
}
else
else
{
{
std
::
size_t
n_dim
=
args
.
front
()
->
get_shape
().
lens
().
size
();
axes
.
resize
(
args
.
front
()
->
get_shape
().
ndim
());
axes
.
resize
(
n_dim
);
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
0
);
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
0
);
}
}
}
}
...
...
src/onnx/parse_reshape.cpp
View file @
25e8cf0b
...
@@ -49,7 +49,7 @@ struct parse_reshape : op_parser<parse_reshape>
...
@@ -49,7 +49,7 @@ struct parse_reshape : op_parser<parse_reshape>
if
(
args
.
size
()
==
2
)
if
(
args
.
size
()
==
2
)
{
{
auto
s
=
args
[
1
]
->
eval
();
auto
s
=
args
[
1
]
->
eval
();
check_arg_empty
(
s
,
"Reshape:
dynamic shape
is not supported"
);
check_arg_empty
(
s
,
"Reshape:
non-constant shape input
is not supported"
);
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
dims
));
});
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
dims
));
});
}
}
...
...
src/onnx/parse_transpose.cpp
View file @
25e8cf0b
...
@@ -47,7 +47,7 @@ struct parse_transpose : op_parser<parse_transpose>
...
@@ -47,7 +47,7 @@ struct parse_transpose : op_parser<parse_transpose>
}
}
// if perm is empty, use the default value
// if perm is empty, use the default value
auto
n_dim
=
args
.
front
()
->
get_shape
().
lens
().
size
();
auto
n_dim
=
args
.
front
()
->
get_shape
().
ndim
();
if
(
perm
.
empty
())
if
(
perm
.
empty
())
{
{
perm
.
resize
(
n_dim
);
perm
.
resize
(
n_dim
);
...
...
src/onnx/parse_trilu.cpp
0 → 100644
View file @
25e8cf0b
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
struct
parse_trilu
:
op_parser
<
parse_trilu
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"Trilu"
}};
}
instruction_ref
parse
(
const
op_desc
&
,
const
onnx_parser
&
,
const
onnx_parser
::
node_info
&
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
auto
input_shape
=
args
[
0
]
->
get_shape
();
assert
(
input_shape
.
ndim
()
>=
2
);
auto
input_lens
=
input_shape
.
lens
();
size_t
num_rows
=
*
(
input_lens
.
rbegin
()
+
1
);
size_t
num_cols
=
input_lens
.
back
();
int
k
=
0
;
bool
upper
=
true
;
if
(
args
.
size
()
>
1
)
{
auto
arg_k
=
args
[
1
]
->
eval
();
check_arg_empty
(
arg_k
,
"PARSE_TRILU: dynamic k not supported"
);
k
=
arg_k
.
at
<
int
>
();
}
if
(
k
<
0
)
MIGRAPHX_THROW
(
"PARSE_TRILU: negative k values not supported"
);
if
(
contains
(
info
.
attributes
,
"upper"
))
{
upper
=
static_cast
<
bool
>
(
info
.
attributes
.
at
(
"upper"
).
i
());
}
shape
::
type_t
output_type
=
args
[
0
]
->
get_shape
().
type
();
// when creating the mask, if upper == 1,
// the inner triangle will have values set to 0
std
::
vector
<
bool
>
mask_mat
(
num_rows
*
num_cols
,
upper
);
for
(
size_t
i
=
0
;
i
<
num_rows
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
std
::
min
(
k
,
static_cast
<
int
>
(
num_cols
));
j
++
)
{
mask_mat
[
i
*
num_cols
+
j
]
=
not
upper
;
}
k
++
;
}
auto
mask
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
output_type
,
{
num_rows
,
num_cols
}},
mask_mat
});
return
info
.
add_broadcastable_binary_op
(
"mul"
,
mask
,
args
[
0
]);
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
Prev
1
2
3
4
5
6
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment