Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
23984458
Commit
23984458
authored
Apr 03, 2019
by
Shucai Xiao
Browse files
separate headfile operators.hpp into multiple files. Each file for one operator
parent
c7b8abc1
Changes
41
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
21 additions
and
1484 deletions
+21
-1484
src/auto_contiguous.cpp
src/auto_contiguous.cpp
+1
-1
src/eliminate_allocation.cpp
src/eliminate_allocation.cpp
+1
-1
src/eliminate_concat.cpp
src/eliminate_concat.cpp
+2
-1
src/eliminate_contiguous.cpp
src/eliminate_contiguous.cpp
+1
-1
src/eliminate_identity.cpp
src/eliminate_identity.cpp
+1
-1
src/fwd_conv_batchnorm_rewrite.cpp
src/fwd_conv_batchnorm_rewrite.cpp
+3
-1
src/include/migraphx/concat_opt.hpp
src/include/migraphx/concat_opt.hpp
+1
-1
src/include/migraphx/op/convolution.hpp
src/include/migraphx/op/convolution.hpp
+1
-0
src/include/migraphx/op/gru.hpp
src/include/migraphx/op/gru.hpp
+2
-0
src/include/migraphx/op/pooling.hpp
src/include/migraphx/op/pooling.hpp
+1
-0
src/include/migraphx/op/unary.hpp
src/include/migraphx/op/unary.hpp
+0
-75
src/include/migraphx/operators.hpp
src/include/migraphx/operators.hpp
+0
-1395
src/include/migraphx/rewrite_rnn.hpp
src/include/migraphx/rewrite_rnn.hpp
+1
-1
src/onnx/onnx.cpp
src/onnx/onnx.cpp
+1
-1
src/opt/memory_coloring_impl.cpp
src/opt/memory_coloring_impl.cpp
+1
-0
src/opt/memory_coloring_impl.hpp
src/opt/memory_coloring_impl.hpp
+0
-1
src/program.cpp
src/program.cpp
+1
-1
src/rewrite_rnn.cpp
src/rewrite_rnn.cpp
+1
-1
src/schedule.cpp
src/schedule.cpp
+1
-1
src/simplify_algebra.cpp
src/simplify_algebra.cpp
+1
-1
No files found.
src/auto_contiguous.cpp
View file @
23984458
#include <migraphx/auto_contiguous.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/op
erator
s.hpp>
#include <migraphx/op
/contiguou
s.hpp>
#include <migraphx/iterator_for.hpp>
namespace
migraphx
{
...
...
src/eliminate_allocation.cpp
View file @
23984458
#include <migraphx/eliminate_allocation.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/op
erators
.hpp>
#include <migraphx/op
/load
.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
...
...
src/eliminate_concat.cpp
View file @
23984458
...
...
@@ -2,7 +2,8 @@
#include <migraphx/eliminate_concat.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/op/load.hpp>
#include <migraphx/op/identity.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/dfor.hpp>
...
...
src/eliminate_contiguous.cpp
View file @
23984458
#include <migraphx/eliminate_contiguous.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
//
#include <migraphx/
op/
operators.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
...
...
src/eliminate_identity.cpp
View file @
23984458
#include <migraphx/eliminate_identity.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
//
#include <migraphx/
op/
operators.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/stringutils.hpp>
#include <utility>
...
...
src/fwd_conv_batchnorm_rewrite.cpp
View file @
23984458
#include <migraphx/fwd_conv_batchnorm_rewrite.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/add.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/dfor.hpp>
...
...
src/include/migraphx/concat_opt.hpp
View file @
23984458
...
...
@@ -9,7 +9,7 @@
#include <utility>
#include <migraphx/operation.hpp>
#include <migraphx/op
erators
.hpp>
#include <migraphx/op
/concat
.hpp>
#include <migraphx/config.hpp>
namespace
migraphx
{
...
...
src/include/migraphx/op/convolution.hpp
View file @
23984458
...
...
@@ -2,6 +2,7 @@
#define MIGRAPHX_GUARD_OPERATORS_CONVOLUTION_HPP
#include <array>
#include <migraphx/op/common.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
...
...
src/include/migraphx/op/gru.hpp
View file @
23984458
...
...
@@ -3,6 +3,8 @@
#include <array>
#include <migraphx/op/common.hpp>
#include <migraphx/op/tanh.hpp>
#include <migraphx/op/sigmoid.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
...
...
src/include/migraphx/op/pooling.hpp
View file @
23984458
...
...
@@ -2,6 +2,7 @@
#define MIGRAPHX_GUARD_OPERATORS_POOLING_HPP
#include <array>
#include <migraphx/op/common.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
...
...
src/include/migraphx/op/unary.hpp
View file @
23984458
...
...
@@ -25,81 +25,6 @@ struct unary
}
};
struct
abs
:
unary
{
std
::
string
name
()
const
{
return
"abs"
;
}
};
struct
exp
:
unary
{
std
::
string
name
()
const
{
return
"exp"
;
}
};
struct
log
:
unary
{
std
::
string
name
()
const
{
return
"log"
;
}
};
struct
sin
:
unary
{
std
::
string
name
()
const
{
return
"sin"
;
}
};
struct
cos
:
unary
{
std
::
string
name
()
const
{
return
"cos"
;
}
};
struct
tan
:
unary
{
std
::
string
name
()
const
{
return
"tan"
;
}
};
struct
asin
:
unary
{
std
::
string
name
()
const
{
return
"asin"
;
}
};
struct
acos
:
unary
{
std
::
string
name
()
const
{
return
"acos"
;
}
};
struct
atan
:
unary
{
std
::
string
name
()
const
{
return
"atan"
;
}
};
struct
sinh
:
unary
{
std
::
string
name
()
const
{
return
"sinh"
;
}
};
struct
cosh
:
unary
{
std
::
string
name
()
const
{
return
"cosh"
;
}
};
struct
tanh
:
unary
{
std
::
string
name
()
const
{
return
"tanh"
;
}
};
struct
sigmoid
:
unary
{
std
::
string
name
()
const
{
return
"sigmoid"
;
}
};
struct
neg
:
unary
{
std
::
string
name
()
const
{
return
"neg"
;
}
};
struct
relu
:
unary
{
std
::
string
name
()
const
{
return
"relu"
;
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
...
...
src/include/migraphx/operators.hpp
deleted
100644 → 0
View file @
c7b8abc1
#ifndef MIGRAPHX_GUARD_OPERATORS_HPP
#define MIGRAPHX_GUARD_OPERATORS_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
enum
padding_mode_t
{
default_
,
// NOLINT
same
,
valid
};
struct
not_computable
{
argument
compute
(
const
shape
&
,
const
std
::
vector
<
argument
>&
)
const
{
MIGRAPHX_THROW
(
"not computable"
);
}
};
struct
batch_norm_inference
{
float
epsilon
=
1.0e-6
f
;
float
momentum
=
0.9
f
;
std
::
string
name
()
const
{
return
"batch_norm_inference"
;
}
enum
bn_infer_mode_t
{
per_activation
,
spatial
,
};
bn_infer_mode_t
bn_mode
=
spatial
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
epsilon
,
"epsilon"
),
f
(
self
.
momentum
,
"momentum"
),
f
(
self
.
bn_mode
,
"bn_mode"
));
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
5
);
check_shapes
{
inputs
.
data
(),
inputs
.
data
()
+
1
,
*
this
}.
only_dims
(
4
);
check_shapes
{
inputs
.
data
()
+
1
,
inputs
.
data
()
+
inputs
.
size
(),
*
this
}.
same_shape
().
elements
(
inputs
.
front
().
lens
()[
1
]);
return
inputs
.
front
();
}
};
struct
lrn
{
float
alpha
=
0.0001
;
float
beta
=
0.75
;
float
bias
=
1.0
;
int
size
=
1
;
std
::
string
name
()
const
{
return
"lrn"
;
}
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
alpha
,
"alpha"
),
f
(
self
.
beta
,
"beta"
),
f
(
self
.
bias
,
"bias"
),
f
(
self
.
size
,
"size"
));
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
return
inputs
.
front
();
}
};
struct
convolution
{
std
::
array
<
std
::
size_t
,
2
>
padding
=
{{
0
,
0
}};
std
::
array
<
std
::
size_t
,
2
>
stride
=
{{
1
,
1
}};
std
::
array
<
std
::
size_t
,
2
>
dilation
=
{{
1
,
1
}};
padding_mode_t
padding_mode
=
default_
;
int
group
=
1
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
padding
,
"padding"
),
f
(
self
.
stride
,
"stride"
),
f
(
self
.
dilation
,
"dilation"
),
f
(
self
.
padding_mode
,
"padding_mode"
),
f
(
self
.
group
,
"group"
));
}
std
::
string
name
()
const
{
return
"convolution"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
).
same_type
().
same_ndims
().
only_dims
(
4
);
const
shape
&
input
=
inputs
.
at
(
0
);
const
shape
&
weights
=
inputs
.
at
(
1
);
auto
t
=
input
.
type
();
if
(
padding_mode
==
default_
)
{
return
{
t
,
{
input
.
lens
()[
0
],
weights
.
lens
()[
0
],
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
(
input
.
lens
()[
2
]
-
(
1
+
dilation
[
0
]
*
(
weights
.
lens
()[
2
]
-
1
))
+
2
*
padding
[
0
])
/
stride
[
0
]
+
1
)),
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
(
input
.
lens
()[
3
]
-
(
1
+
dilation
[
1
]
*
(
weights
.
lens
()[
3
]
-
1
))
+
2
*
padding
[
1
])
/
stride
[
1
]
+
1
)),
}};
}
else
if
(
padding_mode
==
same
)
{
return
{
t
,
{
input
.
lens
()[
0
],
weights
.
lens
()[
0
],
static_cast
<
std
::
size_t
>
(
std
::
ceil
(
static_cast
<
double
>
(
input
.
lens
()[
2
])
/
stride
[
0
])),
static_cast
<
std
::
size_t
>
(
std
::
ceil
(
static_cast
<
double
>
(
input
.
lens
()[
3
])
/
stride
[
1
]))}};
}
else
if
(
padding_mode
==
valid
)
{
return
{
t
,
{
input
.
lens
()[
0
],
weights
.
lens
()[
0
],
static_cast
<
std
::
size_t
>
(
std
::
ceil
(
static_cast
<
double
>
(
input
.
lens
()[
2
]
-
weights
.
lens
()[
2
]
+
1
)
/
stride
[
0
])),
static_cast
<
std
::
size_t
>
(
std
::
ceil
(
static_cast
<
double
>
(
input
.
lens
()[
3
]
-
weights
.
lens
()[
3
]
+
1
)
/
stride
[
1
]))}};
}
else
{
MIGRAPHX_THROW
(
"Invalid padding mode"
);
}
}
};
struct
im2col
{
std
::
array
<
std
::
size_t
,
2
>
padding
=
{{
0
,
0
}};
std
::
array
<
std
::
size_t
,
2
>
stride
=
{{
1
,
1
}};
std
::
array
<
std
::
size_t
,
2
>
dilation
=
{{
1
,
1
}};
padding_mode_t
padding_mode
=
default_
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
padding
,
"padding"
),
f
(
self
.
stride
,
"stride"
),
f
(
self
.
dilation
,
"dilation"
),
f
(
self
.
padding_mode
,
"padding_mode"
));
}
std
::
string
name
()
const
{
return
"im2col"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
input
=
inputs
[
0
];
auto
weights
=
inputs
[
1
];
auto
batch_size
=
input
.
lens
()[
0
];
auto
input_channels
=
weights
.
lens
()[
1
];
auto
kernel_height
=
weights
.
lens
()[
2
];
auto
kernel_width
=
weights
.
lens
()[
3
];
check_shapes
{
inputs
,
*
this
}.
has
(
2
);
if
(
batch_size
!=
1
)
MIGRAPHX_THROW
(
"im2col only support batch_size 1"
);
auto
output_height
=
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
(
input
.
lens
()[
2
]
-
(
1
+
dilation
[
0
]
*
(
kernel_height
-
1
))
+
2
*
padding
[
0
])
/
stride
[
0
]
+
1
));
auto
output_width
=
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
(
input
.
lens
()[
3
]
-
(
1
+
dilation
[
1
]
*
(
kernel_width
-
1
))
+
2
*
padding
[
1
])
/
stride
[
1
]
+
1
));
auto
channels_col
=
kernel_height
*
kernel_width
*
input_channels
;
return
{
input
.
type
(),
{
output_height
*
output_width
,
channels_col
}};
}
};
struct
pooling
{
std
::
string
mode
=
"average"
;
std
::
array
<
std
::
size_t
,
2
>
padding
=
{{
0
,
0
}};
std
::
array
<
std
::
size_t
,
2
>
stride
=
{{
1
,
1
}};
std
::
array
<
std
::
size_t
,
2
>
lengths
=
{{
1
,
1
}};
padding_mode_t
padding_mode
=
default_
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
mode
,
"mode"
),
f
(
self
.
padding
,
"padding"
),
f
(
self
.
padding
,
"padding_mode"
),
f
(
self
.
stride
,
"stride"
),
f
(
self
.
lengths
,
"lengths"
));
}
std
::
string
name
()
const
{
return
"pooling"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
).
only_dims
(
4
);
const
shape
&
input
=
inputs
.
at
(
0
);
auto
t
=
input
.
type
();
assert
(
lengths
[
0
]
<=
(
input
.
lens
()[
2
]
+
2
*
padding
[
0
]));
assert
(
lengths
[
1
]
<=
(
input
.
lens
()[
3
]
+
2
*
padding
[
1
]));
if
(
padding_mode
==
default_
)
{
return
{
t
,
{
input
.
lens
()[
0
],
input
.
lens
()[
1
],
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
std
::
ptrdiff_t
(
std
::
floor
((
input
.
lens
()[
2
]
+
2
*
padding
[
0
]
-
lengths
[
0
])
/
static_cast
<
float
>
(
stride
[
0
])))
+
1
)),
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
std
::
ptrdiff_t
(
std
::
floor
((
input
.
lens
()[
3
]
+
2
*
padding
[
1
]
-
lengths
[
1
])
/
static_cast
<
float
>
(
stride
[
1
])))
+
1
)),
}};
}
else
if
(
padding_mode
==
same
)
{
return
{
t
,
{
input
.
lens
()[
0
],
input
.
lens
()[
1
],
static_cast
<
std
::
size_t
>
(
std
::
ceil
(
static_cast
<
double
>
(
input
.
lens
()[
2
])
/
stride
[
0
])),
static_cast
<
std
::
size_t
>
(
std
::
ceil
(
static_cast
<
double
>
(
input
.
lens
()[
3
])
/
stride
[
1
]))}};
}
else
if
(
padding_mode
==
valid
)
{
return
{
t
,
{
input
.
lens
()[
0
],
input
.
lens
()[
1
],
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
std
::
ptrdiff_t
(
std
::
floor
((
input
.
lens
()[
2
]
-
lengths
[
0
])
/
static_cast
<
float
>
(
stride
[
0
])))
+
1
)),
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
std
::
ptrdiff_t
(
std
::
floor
((
input
.
lens
()[
3
]
-
lengths
[
1
])
/
static_cast
<
float
>
(
stride
[
1
])))
+
1
)),
}};
}
else
{
MIGRAPHX_THROW
(
"Invalid padding mode"
);
}
}
};
struct
leaky_relu
{
std
::
string
name
()
const
{
return
"leaky_relu"
;
}
float
alpha
;
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
return
inputs
.
front
();
}
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
alpha
,
"alpha"
));
}
};
struct
elu
{
std
::
string
name
()
const
{
return
"elu"
;
}
float
alpha
;
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
return
inputs
.
front
();
}
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
alpha
,
"alpha"
));
}
};
struct
transpose
{
std
::
vector
<
int64_t
>
dims
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
dims
,
"dims"
));
}
std
::
string
name
()
const
{
return
"transpose"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
input
=
inputs
.
at
(
0
);
auto
input_lens
=
input
.
lens
();
auto
input_strides
=
input
.
strides
();
auto
t
=
input
.
type
();
if
(
dims
.
size
()
!=
input_lens
.
size
())
{
MIGRAPHX_THROW
(
"Permutation has wrong number of axes"
);
}
std
::
vector
<
int64_t
>
axes
(
dims
.
size
());
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
0
);
if
(
!
std
::
is_permutation
(
axes
.
begin
(),
axes
.
end
(),
dims
.
begin
()))
{
MIGRAPHX_THROW
(
"Invalid permutation"
);
}
std
::
vector
<
size_t
>
output_lens
(
input_lens
.
size
());
std
::
vector
<
size_t
>
output_strides
(
input_lens
.
size
());
for
(
std
::
size_t
i
=
0
;
i
<
output_lens
.
size
();
i
++
)
{
output_lens
[
i
]
=
input_lens
[
dims
[
i
]];
output_strides
[
i
]
=
input_strides
[
dims
[
i
]];
}
return
{
t
,
output_lens
,
output_strides
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
/// The contiguous operator takes a non-standard input tensor and returns
/// the same tensor but in standard form. For example, if input tensor A which has lens = (4,5)
/// is first transposed, i.e. lens = (5,4), this tensor's data layout remained the same
/// during the transpose operation; only it's shape lengths and strides were changed.
/// This leaves the tensor in a non-standard form. The contiguous operator copies the
/// underlying data such that resulting tensor is returned to a standard form.
struct
contiguous
{
std
::
string
name
()
const
{
return
"contiguous"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
lens
=
inputs
.
at
(
0
).
lens
();
auto
t
=
inputs
.
at
(
0
).
type
();
return
{
t
,
lens
};
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
assert
(
output_shape
.
standard
());
argument
result
{
output_shape
};
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
shape_for_each
(
output
.
get_shape
(),
[
&
](
const
auto
&
idx
)
{
output
(
idx
.
begin
(),
idx
.
end
())
=
input
(
idx
.
begin
(),
idx
.
end
());
});
});
return
result
;
}
};
struct
concat
{
std
::
size_t
axis
=
0
;
std
::
string
name
()
const
{
return
"concat"
;
}
std
::
vector
<
std
::
size_t
>
compute_offsets
(
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
{
std
::
vector
<
std
::
size_t
>
offsets
;
std
::
vector
<
std
::
size_t
>
offset
(
args
[
0
].
get_shape
().
lens
().
size
(),
0
);
offset
[
axis
]
=
0
;
for
(
const
auto
&
arg
:
args
)
{
offsets
.
push_back
(
output_shape
.
index
(
offset
));
offset
[
axis
]
+=
arg
.
get_shape
().
lens
()[
axis
];
}
return
offsets
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
if
(
inputs
.
empty
())
{
MIGRAPHX_THROW
(
"Number of input tensors should exceed 0"
);
}
const
auto
&
first_shape_lens
=
inputs
.
front
().
lens
();
const
auto
&
type
=
inputs
.
front
().
type
();
for
(
std
::
size_t
l
=
0
;
l
<
first_shape_lens
.
size
();
l
++
)
{
if
(
l
!=
axis
)
{
if
(
!
std
::
all_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
&
](
auto
s
)
{
return
s
.
lens
()[
l
]
==
first_shape_lens
[
l
];
}))
{
MIGRAPHX_THROW
(
"Non-axis dimensions should match"
);
}
}
}
std
::
size_t
new_dim_axis
=
0
;
for
(
const
auto
&
input
:
inputs
)
{
const
auto
&
lens
=
input
.
lens
();
new_dim_axis
+=
lens
[
axis
];
}
std
::
vector
<
std
::
size_t
>
new_lens
;
std
::
copy
(
first_shape_lens
.
begin
(),
first_shape_lens
.
end
(),
std
::
back_inserter
(
new_lens
));
new_lens
[
axis
]
=
new_dim_axis
;
return
{
type
,
new_lens
};
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
std
::
vector
<
std
::
size_t
>
coffsets
=
compute_offsets
(
output_shape
,
args
);
for
(
std
::
size_t
l
=
0
;
l
<
args
.
size
();
l
++
)
{
auto
argl
=
args
[
l
];
std
::
size_t
nelements
=
argl
.
get_shape
().
elements
();
visit_all
(
result
,
argl
)([
&
](
auto
output
,
auto
input
)
{
auto
slice_shape
=
shape
{
output_shape
.
type
(),
input
.
get_shape
().
lens
(),
output_shape
.
strides
()};
auto
slice
=
make_view
(
slice_shape
,
output
.
data
()
+
coffsets
[
l
]);
// cppcheck-suppress useStlAlgorithm
for
(
std
::
size_t
i
=
0
;
i
<
nelements
;
i
++
)
{
slice
[
i
]
=
input
[
i
];
}
});
}
return
result
;
}
};
struct
slice
{
std
::
vector
<
int64_t
>
axes
;
std
::
vector
<
int64_t
>
starts
;
std
::
vector
<
int64_t
>
ends
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axes
,
"axes"
),
f
(
self
.
starts
,
"starts"
),
f
(
self
.
ends
,
"ends"
));
}
std
::
string
name
()
const
{
return
"slice"
;
}
auto
fix_index
(
const
std
::
vector
<
std
::
size_t
>&
lens
,
std
::
size_t
axis
,
int64_t
index
)
const
{
int64_t
r
=
std
::
min
(
index
,
static_cast
<
int64_t
>
(
lens
[
axis
]));
if
(
r
<
0
)
r
+=
lens
[
axis
];
return
std
::
size_t
(
r
);
}
auto
compute_offset
(
const
shape
&
s
)
const
{
const
std
::
vector
<
std
::
size_t
>&
lens
=
s
.
lens
();
const
std
::
vector
<
std
::
size_t
>&
strides
=
s
.
strides
();
auto
offset
=
0
;
if
(
!
axes
.
empty
())
{
for
(
std
::
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
auto
axis
=
axes
[
i
];
offset
+=
fix_index
(
lens
,
axis
,
starts
[
i
])
*
strides
[
axis
];
}
}
else
{
for
(
std
::
size_t
axis
=
0
;
axis
<
lens
.
size
();
axis
++
)
{
offset
+=
fix_index
(
lens
,
axis
,
starts
[
axis
])
*
strides
[
axis
];
}
}
return
offset
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
input_shape
=
inputs
[
0
];
auto
t
=
input_shape
.
type
();
const
auto
&
old_lens
=
input_shape
.
lens
();
const
auto
&
old_strides
=
input_shape
.
strides
();
if
(
starts
.
size
()
!=
axes
.
size
()
||
axes
.
size
()
!=
ends
.
size
())
{
MIGRAPHX_THROW
(
"inconsistent sizes"
);
}
std
::
vector
<
std
::
size_t
>
new_lens
=
old_lens
;
for
(
std
::
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
auto
axis
=
axes
[
i
];
new_lens
[
axis
]
=
fix_index
(
old_lens
,
axis
,
ends
[
i
])
-
fix_index
(
old_lens
,
axis
,
starts
[
i
]);
}
return
shape
{
t
,
new_lens
,
old_strides
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
auto
input
=
args
[
0
];
auto
offset
=
compute_offset
(
input
.
get_shape
())
*
output_shape
.
type_size
();
return
{
std
::
move
(
output_shape
),
[
=
]
{
return
input
.
data
()
+
offset
;
}};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
squeeze
{
std
::
vector
<
int64_t
>
axes
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axes
,
"axes"
));
}
std
::
string
name
()
const
{
return
"squeeze"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
input_shape
=
inputs
[
0
];
auto
type
=
input_shape
.
type
();
auto
old_lens
=
input_shape
.
lens
();
if
(
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
axis
)
{
return
input_shape
.
lens
()[
axis
]
!=
1
;
}))
{
MIGRAPHX_THROW
(
"squeeze axis dimension should be equal to 1"
);
}
std
::
vector
<
std
::
size_t
>
new_lens
;
if
(
axes
.
empty
())
{
std
::
copy_if
(
old_lens
.
begin
(),
old_lens
.
end
(),
std
::
back_inserter
(
new_lens
),
[](
auto
len
)
{
return
len
!=
1
;
});
}
else
{
for
(
std
::
size_t
i
=
0
;
i
<
old_lens
.
size
();
i
++
)
{
if
(
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
i
)
==
axes
.
end
())
{
new_lens
.
push_back
(
old_lens
[
i
]);
}
}
}
return
shape
{
type
,
new_lens
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
unsqueeze
{
std
::
vector
<
int64_t
>
axes
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axes
,
"axes"
));
}
std
::
string
name
()
const
{
return
"unsqueeze"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
input_shape
=
inputs
[
0
];
auto
type
=
input_shape
.
type
();
auto
old_lens
=
input_shape
.
lens
();
std
::
size_t
new_size
=
old_lens
.
size
()
+
axes
.
size
();
std
::
vector
<
std
::
size_t
>
new_lens
(
new_size
);
std
::
size_t
p
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
new_size
;
i
++
)
{
if
(
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
i
)
!=
axes
.
end
())
{
new_lens
[
i
]
=
1
;
}
else
{
new_lens
[
i
]
=
old_lens
[
p
++
];
}
}
return
shape
{
type
,
new_lens
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
reshape
{
std
::
vector
<
int64_t
>
dims
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
dims
,
"dims"
));
}
std
::
string
name
()
const
{
return
"reshape"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
&&
idims
=
inputs
.
front
().
lens
();
std
::
vector
<
std
::
size_t
>
rdims
(
dims
.
begin
(),
dims
.
end
());
auto
n_neg_dims
=
std
::
count
(
dims
.
begin
(),
dims
.
end
(),
-
1
);
if
(
n_neg_dims
>
1
)
MIGRAPHX_THROW
(
"Dimensions for reshape can only have one -1 dim"
);
for
(
std
::
size_t
i
=
0
;
i
<
dims
.
size
();
i
++
)
{
if
(
dims
[
i
]
==
0
)
rdims
[
i
]
=
idims
[
i
];
// since rdims using size_t type, -1 is the max value
// is size_t that cause later compuation incorrect
if
(
dims
[
i
]
==
-
1
)
rdims
[
i
]
=
1
;
}
if
(
n_neg_dims
>
0
)
{
size_t
missing_dim
=
inputs
.
front
().
elements
()
/
std
::
accumulate
(
rdims
.
begin
(),
rdims
.
end
(),
1
,
std
::
multiplies
<
int64_t
>
());
for
(
std
::
size_t
i
=
0
;
i
<
rdims
.
size
();
i
++
)
{
if
(
dims
[
i
]
==
-
1
)
rdims
[
i
]
=
missing_dim
;
}
}
shape
s
{
inputs
.
front
().
type
(),
rdims
};
if
(
s
.
elements
()
!=
inputs
.
front
().
elements
())
MIGRAPHX_THROW
(
"Wrong number of elements for reshape"
);
return
s
;
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
pad
{
std
::
vector
<
int64_t
>
pads
;
float
value
=
0.0
f
;
enum
pad_op_mode_t
{
constant_pad
,
reflect_pad
,
edge_pad
};
pad_op_mode_t
mode
=
constant_pad
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
mode
,
"mode"
),
f
(
self
.
pads
,
"pads"
),
f
(
self
.
value
,
"value"
));
}
std
::
string
name
()
const
{
return
"pad"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
&&
idims
=
inputs
.
front
().
lens
();
std
::
vector
<
std
::
size_t
>
rdims
(
idims
.
begin
(),
idims
.
end
());
std
::
size_t
num_dims
=
rdims
.
size
();
for
(
std
::
size_t
i
=
0
;
i
<
num_dims
;
i
++
)
{
rdims
[
i
]
+=
pads
[
i
]
+
pads
[
i
+
num_dims
];
}
shape
s
{
inputs
.
front
().
type
(),
rdims
};
return
s
;
}
};
struct
as_shape
{
shape
s
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
s
,
"shape"
));
}
std
::
string
name
()
const
{
return
"as_shape"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
).
standard
();
assert
(
inputs
.
front
().
elements
()
==
s
.
elements
());
return
s
;
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
gather
{
int
axis
=
0
;
std
::
string
name
()
const
{
return
"gather"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
);
auto
lens
=
inputs
[
0
].
lens
();
int
n_dim
=
static_cast
<
int
>
(
lens
.
size
());
if
(
axis
>=
n_dim
||
axis
<
-
n_dim
)
{
MIGRAPHX_THROW
(
"Gather: axis is out of range."
);
}
// negative axis means counting dimensions from back
int
axis_index
=
(
axis
<
0
)
?
(
n_dim
+
axis
)
:
axis
;
auto
type
=
inputs
[
0
].
type
();
lens
.
erase
(
lens
.
begin
()
+
axis_index
);
if
(
!
inputs
[
1
].
scalar
())
{
auto
ind_lens
=
inputs
[
1
].
lens
();
lens
.
insert
(
lens
.
begin
()
+
axis_index
,
ind_lens
.
begin
(),
ind_lens
.
end
());
}
// for scalar output
if
(
lens
.
empty
())
{
return
{
type
};
}
return
{
type
,
lens
};
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
// negative axis means counting dimensions from back
int
axis_index
=
(
axis
<
0
)
?
static_cast
<
int
>
(
args
[
0
].
get_shape
().
lens
().
size
()
+
axis
)
:
axis
;
// max dimension in axis
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
data
)
{
args
[
1
].
visit
([
&
](
auto
indices
)
{
if
(
output_shape
.
scalar
())
{
output
[
0
]
=
data
[
indices
.
front
()];
}
else
{
auto
out_lens
=
data
.
get_shape
().
lens
();
out_lens
[
axis_index
]
=
indices
.
get_shape
().
elements
();
migraphx
::
shape
out_comp_shape
{
data
.
get_shape
().
type
(),
out_lens
};
shape_for_each
(
out_comp_shape
,
[
&
](
const
auto
&
out_idx
)
{
auto
data_idx
=
out_idx
;
data_idx
[
axis_index
]
=
indices
[
data_idx
[
axis_index
]];
output
[
out_comp_shape
.
index
(
out_idx
.
begin
(),
out_idx
.
end
())]
=
data
(
data_idx
.
begin
(),
data_idx
.
end
());
});
}
});
});
return
result
;
}
};
struct
dot
{
float
alpha
=
1.0
;
float
beta
=
0.0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
alpha
,
"alpha"
),
f
(
self
.
beta
,
"beta"
));
}
std
::
string
name
()
const
{
return
"dot"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
).
same_type
();
const
shape
&
a
=
inputs
.
at
(
0
);
const
shape
&
b
=
inputs
.
at
(
1
);
auto
t
=
a
.
type
();
// according to the specification of the numpy.matmul()
// inputs with the shape dims more than 2 are acceptable
// as long as dim values are the same in the two inputs
if
(
!
std
::
equal
(
a
.
lens
().
rbegin
()
+
2
,
a
.
lens
().
rend
(),
b
.
lens
().
rbegin
()
+
2
))
{
MIGRAPHX_THROW
(
"DOT: dim values mismatch"
);
}
std
::
size_t
dim_0
=
a
.
lens
().
size
()
-
2
;
std
::
size_t
dim_1
=
a
.
lens
().
size
()
-
1
;
if
(
a
.
lens
()[
dim_1
]
!=
b
.
lens
()[
dim_0
])
MIGRAPHX_THROW
(
"Inner dimensions do not match: {"
+
to_string_range
(
a
.
lens
())
+
"} x {"
+
to_string_range
(
b
.
lens
())
+
"}"
);
auto
out_lens
=
a
.
lens
();
out_lens
[
dim_1
]
=
b
.
lens
()[
dim_1
];
return
{
t
,
out_lens
};
}
};
struct
unary
{
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
1
);
return
inputs
.
at
(
0
);
}
};
struct
identity
{
std
::
string
name
()
const
{
return
"identity"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
return
inputs
.
at
(
0
);
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
at
(
0
).
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
abs
:
unary
{
std
::
string
name
()
const
{
return
"abs"
;
}
};
struct
exp
:
unary
{
std
::
string
name
()
const
{
return
"exp"
;
}
};
struct
log
:
unary
{
std
::
string
name
()
const
{
return
"log"
;
}
};
struct
sin
:
unary
{
std
::
string
name
()
const
{
return
"sin"
;
}
};
struct
cos
:
unary
{
std
::
string
name
()
const
{
return
"cos"
;
}
};
struct
tan
:
unary
{
std
::
string
name
()
const
{
return
"tan"
;
}
};
struct
asin
:
unary
{
std
::
string
name
()
const
{
return
"asin"
;
}
};
struct
acos
:
unary
{
std
::
string
name
()
const
{
return
"acos"
;
}
};
struct
atan
:
unary
{
std
::
string
name
()
const
{
return
"atan"
;
}
};
struct
sinh
:
unary
{
std
::
string
name
()
const
{
return
"sinh"
;
}
};
struct
cosh
:
unary
{
std
::
string
name
()
const
{
return
"cosh"
;
}
};
struct
tanh
:
unary
{
std
::
string
name
()
const
{
return
"tanh"
;
}
};
struct
sigmoid
:
unary
{
std
::
string
name
()
const
{
return
"sigmoid"
;
}
};
struct
neg
:
unary
{
std
::
string
name
()
const
{
return
"neg"
;
}
};
struct
relu
:
unary
{
std
::
string
name
()
const
{
return
"relu"
;
}
};
struct
softmax
{
std
::
string
name
()
const
{
return
"softmax"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
1
).
only_dims
(
4
);
return
inputs
.
at
(
0
);
}
};
struct
logsoftmax
{
int
axis
=
1
;
std
::
string
name
()
const
{
return
"logsoftmax"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
1
);
if
(
axis
<
0
||
axis
>
inputs
[
0
].
lens
().
size
())
{
MIGRAPHX_THROW
(
"LogSoftMax: input axis value "
+
std
::
to_string
(
axis
)
+
" is out of range"
);
}
return
inputs
.
at
(
0
);
}
};
struct
flatten
{
uint64_t
axis
=
0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axis
,
"axis"
));
}
std
::
string
name
()
const
{
return
"flatten"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
1
);
auto
&&
lens
=
inputs
.
front
().
lens
();
if
(
axis
>
lens
.
size
())
{
MIGRAPHX_THROW
(
"axis for flatten must be less than tensor rank"
);
}
auto
x
=
std
::
accumulate
(
lens
.
begin
(),
lens
.
begin
()
+
axis
,
std
::
size_t
{
1
},
std
::
multiplies
<>
{});
auto
y
=
std
::
accumulate
(
lens
.
begin
()
+
axis
,
lens
.
end
(),
std
::
size_t
{
1
},
std
::
multiplies
<>
{});
return
{
inputs
.
at
(
0
).
type
(),
{
x
,
y
}};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
/// The broadcast operator performs the numpy-style broadcasting of an axis of a given tensor. This
/// is achieved primarily by setting the stride of the broadcasted axis to zero. Linear indicies are
/// computed from multi-indicies by computing the inner product on the multi-index with the strides.
/// For example, if we have a tensor A(2,3) it has lengths of (2,3) and strides of (3,1). If we want
/// to compute the linear offset that corresponds to the element on the 2nd row (i = 1) and 3rd
/// column (j = 2), we compute the following inner product (1,2) dot (3, 1) = 1*3 + 2*1 = 5. It is
/// obvious from there that we can negate the effects of a given axis by setting the stride of that
/// axis to zero.
struct
broadcast
{
uint64_t
axis
=
0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axis
,
"axis"
));
}
shape
broadcast_shape
;
std
::
string
name
()
const
{
return
"broadcast"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
t
=
inputs
.
at
(
0
).
type
();
auto
input
=
inputs
.
at
(
0
);
std
::
vector
<
size_t
>
bcast_strides
(
broadcast_shape
.
lens
().
size
(),
0
);
if
(
std
::
all_of
(
broadcast_shape
.
lens
().
cbegin
(),
broadcast_shape
.
lens
().
cend
(),
[
&
](
auto
x
)
{
return
x
==
1
;
}))
{
if
(
axis
!=
0
)
MIGRAPHX_THROW
(
"when broadcasting tensor of size 1, axis should be 0"
);
return
{
t
,
broadcast_shape
.
lens
(),
std
::
move
(
bcast_strides
)};
}
else
{
assert
(
broadcast_shape
.
lens
().
size
()
-
axis
>=
input
.
lens
().
size
());
if
(
!
std
::
equal
(
input
.
lens
().
begin
(),
input
.
lens
().
end
(),
broadcast_shape
.
lens
().
begin
()
+
axis
))
MIGRAPHX_THROW
(
"when broadcasting success sizes must match"
);
std
::
copy
(
input
.
strides
().
begin
(),
input
.
strides
().
end
(),
bcast_strides
.
begin
()
+
axis
);
return
{
t
,
broadcast_shape
.
lens
(),
std
::
move
(
bcast_strides
)};
}
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
at
(
0
).
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
multibroadcast
{
std
::
vector
<
std
::
size_t
>
output_lens
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
output_lens
,
"output_lens"
));
}
std
::
string
name
()
const
{
return
"multibroadcast"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
t
=
inputs
.
at
(
0
).
type
();
auto
input
=
inputs
.
at
(
0
);
if
(
input
.
lens
().
empty
())
MIGRAPHX_THROW
(
"inputs dimensions should be > 0"
);
if
(
input
.
lens
().
size
()
>
output_lens
.
size
())
MIGRAPHX_THROW
(
"inputs dimensions should <= output size"
);
std
::
vector
<
size_t
>
bcast_strides
(
output_lens
.
size
(),
0
);
auto
offset
=
output_lens
.
size
()
-
input
.
lens
().
size
();
for
(
int
i
=
input
.
lens
().
size
()
-
1
;
i
>=
0
;
i
--
)
{
if
(
output_lens
[
i
+
offset
]
==
input
.
lens
()[
i
])
{
bcast_strides
[
i
+
offset
]
=
input
.
strides
()[
i
];
}
}
return
{
t
,
output_lens
,
bcast_strides
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
at
(
0
).
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
scalar
{
shape
scalar_bcast
;
std
::
string
name
()
const
{
return
"scalar"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
assert
(
check_shapes
{
inputs
}.
has
(
1
).
only_dims
(
1
).
size
()
==
1
);
auto
t
=
inputs
.
at
(
0
).
type
();
std
::
vector
<
std
::
size_t
>
strides
(
scalar_bcast
.
lens
().
size
(),
0
);
return
{
t
,
scalar_bcast
.
lens
(),
strides
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
at
(
0
).
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
binary
{
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
2
).
same_type
().
same_dims
();
auto
t
=
inputs
.
at
(
0
).
type
();
auto
lens
=
inputs
.
at
(
0
).
lens
();
return
{
t
,
lens
};
}
};
struct
add
:
binary
{
std
::
string
name
()
const
{
return
"add"
;
}
};
struct
sub
:
binary
{
std
::
string
name
()
const
{
return
"sub"
;
}
};
struct
mul
:
binary
{
std
::
string
name
()
const
{
return
"mul"
;
}
};
struct
div
:
binary
{
std
::
string
name
()
const
{
return
"div"
;
}
};
struct
max
:
binary
{
std
::
string
name
()
const
{
return
"max"
;
}
};
struct
min
:
binary
{
std
::
string
name
()
const
{
return
"min"
;
}
};
struct
load
{
shape
s
;
std
::
size_t
offset
=
0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
s
,
"shape"
),
f
(
self
.
offset
,
"offset"
));
}
std
::
string
name
()
const
{
return
"load"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
1
);
return
s
;
}
argument
compute
(
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
{
if
((
offset
+
s
.
bytes
())
>
args
[
0
].
get_shape
().
bytes
())
MIGRAPHX_THROW
(
"Load access is out of bounds"
);
return
{
s
,
args
[
0
].
data
()
+
offset
};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
load
&
op
)
{
os
<<
op
.
name
()
<<
"["
;
os
<<
"offset="
<<
op
.
offset
<<
","
;
os
<<
"end="
<<
(
op
.
offset
+
op
.
s
.
bytes
())
<<
"]"
;
return
os
;
}
};
struct
outline
{
shape
s
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
s
,
"shape"
));
}
std
::
string
name
()
const
{
return
"outline"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
0
);
return
s
;
}
argument
compute
(
const
shape
&
,
const
std
::
vector
<
argument
>&
)
const
{
return
{
s
,
nullptr
};
}
};
// indicate rnn computation direction
enum
class
rnn_direction
{
forward
,
reverse
,
bidirectional
,
};
struct
rnn
{
std
::
size_t
hidden_size
=
1
;
std
::
vector
<
operation
>
actv_funcs
{
tanh
{},
tanh
{}};
rnn_direction
direction
=
rnn_direction
::
forward
;
float
clip
=
0.0
f
;
std
::
string
name
()
const
{
return
"rnn"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
in_dims
=
inputs
[
0
].
lens
();
auto
hidden_dims
=
inputs
[
2
].
lens
();
if
(
hidden_size
!=
hidden_dims
[
2
])
{
MIGRAPHX_THROW
(
"RNN: hidden size mismatch in attribute and input"
);
}
std
::
size_t
num_directions
=
1
;
if
(
direction
==
rnn_direction
::
bidirectional
)
{
num_directions
=
2
;
}
if
(
num_directions
!=
hidden_dims
[
0
])
{
MIGRAPHX_THROW
(
"RNN: num_direction mismatch in attribute and input"
);
}
std
::
vector
<
std
::
size_t
>
out_dims
(
in_dims
);
out_dims
.
insert
(
out_dims
.
begin
()
+
1
,
num_directions
);
out_dims
.
back
()
=
hidden_size
;
return
{
inputs
[
0
].
type
(),
out_dims
};
}
};
struct
rnn_last_output
{
std
::
string
name
()
const
{
return
"rnn_last_output"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
dims
=
inputs
[
0
].
lens
();
// remove the first dimension, remaing are output shape
dims
.
erase
(
dims
.
begin
());
return
{
inputs
[
0
].
type
(),
dims
};
}
};
struct
gru
{
std
::
size_t
hidden_size
=
1
;
std
::
vector
<
operation
>
actv_funcs
{
sigmoid
{},
tanh
{}};
rnn_direction
direction
=
rnn_direction
::
forward
;
float
clip
=
0.0
f
;
int
linear_before_reset
=
0
;
std
::
string
name
()
const
{
return
"gru"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
in_dims
=
inputs
[
0
].
lens
();
auto
hidden_dims
=
inputs
[
2
].
lens
();
if
(
hidden_size
!=
hidden_dims
[
2
])
{
MIGRAPHX_THROW
(
"GRU: hidden size mismatch in attribute and input"
);
}
std
::
size_t
num_directions
=
1
;
if
(
direction
==
rnn_direction
::
bidirectional
)
{
num_directions
=
2
;
}
if
(
num_directions
!=
hidden_dims
[
0
])
{
MIGRAPHX_THROW
(
"GRU: num_direction does not match the direction attribute"
);
}
std
::
vector
<
std
::
size_t
>
out_dims
(
in_dims
);
out_dims
.
insert
(
out_dims
.
begin
()
+
1
,
num_directions
);
out_dims
.
back
()
=
hidden_size
;
return
{
inputs
[
0
].
type
(),
out_dims
};
}
};
struct
lstm
{
std
::
size_t
hidden_size
=
1
;
std
::
vector
<
operation
>
actv_funcs
{
sigmoid
{},
tanh
{},
tanh
{}};
rnn_direction
direction
=
rnn_direction
::
forward
;
float
clip
=
0.0
f
;
int
input_forget
=
0
;
std
::
string
name
()
const
{
return
"lstm"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
in_dims
=
inputs
[
0
].
lens
();
auto
hidden_dims
=
inputs
[
2
].
lens
();
if
(
hidden_size
!=
hidden_dims
[
2
])
{
MIGRAPHX_THROW
(
"LSTM: hidden size mismatch in attribute and input"
);
}
std
::
size_t
num_directions
=
1
;
if
(
direction
==
rnn_direction
::
bidirectional
)
{
num_directions
=
2
;
}
if
(
num_directions
!=
hidden_dims
[
0
])
{
MIGRAPHX_THROW
(
"LSTM: num_direction does not match the direction attribute"
);
}
std
::
vector
<
std
::
size_t
>
out_dims
(
in_dims
);
out_dims
.
insert
(
out_dims
.
begin
()
+
1
,
num_directions
);
out_dims
.
back
()
=
hidden_size
;
return
{
inputs
[
0
].
type
(),
out_dims
};
}
};
struct
lstm_last_cell_output
{
std
::
string
name
()
const
{
return
"lstm_last_cell_output"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
dims
=
inputs
[
0
].
lens
();
// remove the first dimension, remaing are output shape
dims
.
erase
(
dims
.
begin
());
return
{
inputs
[
0
].
type
(),
dims
};
}
};
struct
undefined
{
std
::
string
name
()
const
{
return
"undefined"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
0
);
return
{};
}
argument
compute
(
const
shape
&
,
const
std
::
vector
<
argument
>&
)
const
{
return
{{},
nullptr
};
}
};
struct
unknown
{
std
::
string
op
;
std
::
string
name
()
const
{
return
"unknown:"
+
op
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
input
)
const
{
if
(
input
.
empty
())
return
{};
else
return
input
.
front
();
}
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
unknown
&
x
)
{
os
<<
x
.
name
();
return
os
;
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/rewrite_rnn.hpp
View file @
23984458
...
...
@@ -4,7 +4,7 @@
#include <string>
#include <vector>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/operat
ors
.hpp>
#include <migraphx/operat
ion
.hpp>
#include <migraphx/config.hpp>
namespace
migraphx
{
...
...
src/onnx/onnx.cpp
View file @
23984458
...
...
@@ -11,7 +11,7 @@
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/
op/
operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
...
...
src/opt/memory_coloring_impl.cpp
View file @
23984458
#include <migraphx/op/load.hpp>
#include "memory_coloring_impl.hpp"
namespace
migraphx
{
...
...
src/opt/memory_coloring_impl.hpp
View file @
23984458
...
...
@@ -3,7 +3,6 @@
#include <migraphx/program.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/pass_config.hpp>
#include <migraphx/config.hpp>
...
...
src/program.cpp
View file @
23984458
#include <migraphx/program.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/op
erators
.hpp>
#include <migraphx/op
/identity
.hpp>
#include <migraphx/target.hpp>
#include <migraphx/env.hpp>
#include <migraphx/ranges.hpp>
...
...
src/rewrite_rnn.cpp
View file @
23984458
#include <migraphx/rewrite_rnn.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/
op/
operators.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/dfor.hpp>
...
...
src/schedule.cpp
View file @
23984458
#include <migraphx/schedule.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/op
erators
.hpp>
#include <migraphx/op
/identity
.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/functional.hpp>
...
...
src/simplify_algebra.cpp
View file @
23984458
#include <migraphx/simplify_algebra.hpp>
#include <migraphx/program.hpp>
#include <migraphx/op
erators
.hpp>
#include <migraphx/op
/add
.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment