Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
22500e6c
Commit
22500e6c
authored
Jun 25, 2019
by
Shucai Xiao
Browse files
clang format
parent
ea932b63
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
34 additions
and
23 deletions
+34
-23
src/targets/cpu/lowering.cpp
src/targets/cpu/lowering.cpp
+8
-8
src/targets/gpu/device/logsoftmax.cpp
src/targets/gpu/device/logsoftmax.cpp
+4
-3
src/targets/gpu/device/softmax.cpp
src/targets/gpu/device/softmax.cpp
+7
-6
src/targets/gpu/include/migraphx/gpu/device/reduce_opers.hpp
src/targets/gpu/include/migraphx/gpu/device/reduce_opers.hpp
+15
-6
No files found.
src/targets/cpu/lowering.cpp
View file @
22500e6c
...
...
@@ -533,7 +533,7 @@ struct cpu_softmax
{
argument
result
{
output_shape
};
auto
batch_lens
=
output_shape
.
lens
();
std
::
size_t
n_dims
=
batch_lens
[
op
.
axis
];
std
::
size_t
n_dims
=
batch_lens
[
op
.
axis
];
batch_lens
[
op
.
axis
]
=
1
;
shape
batch_shape
{
shape
::
int32_type
,
batch_lens
};
...
...
@@ -552,9 +552,9 @@ struct cpu_softmax
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
{
idx
[
op
.
axis
]
=
j
;
std
::
size_t
index
=
output_shape
.
index
(
idx
);
output
[
index
]
=
std
::
exp
(
input
[
index
]
-
batch_max
[
i
]);
idx
[
op
.
axis
]
=
j
;
std
::
size_t
index
=
output_shape
.
index
(
idx
);
output
[
index
]
=
std
::
exp
(
input
[
index
]
-
batch_max
[
i
]);
}
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
...
...
@@ -591,7 +591,7 @@ struct cpu_logsoftmax
{
argument
result
{
output_shape
};
auto
batch_lens
=
output_shape
.
lens
();
std
::
size_t
n_dims
=
batch_lens
[
op
.
axis
];
std
::
size_t
n_dims
=
batch_lens
[
op
.
axis
];
batch_lens
[
op
.
axis
]
=
1
;
shape
batch_shape
{
shape
::
int32_type
,
batch_lens
};
...
...
@@ -613,9 +613,9 @@ struct cpu_logsoftmax
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
{
idx
[
op
.
axis
]
=
j
;
std
::
size_t
index
=
output_shape
.
index
(
idx
);
output
[
index
]
=
input
[
index
]
-
batch_max
[
i
];
idx
[
op
.
axis
]
=
j
;
std
::
size_t
index
=
output_shape
.
index
(
idx
);
output
[
index
]
=
input
[
index
]
-
batch_max
[
i
];
}
for
(
std
::
size_t
j
=
0
;
j
<
n_dims
;
++
j
)
...
...
src/targets/gpu/device/logsoftmax.cpp
View file @
22500e6c
...
...
@@ -33,15 +33,16 @@ void logsoftmax(hipStream_t stream, const argument& result, const argument& arg,
launch
(
stream
,
batch_shape
.
elements
()
*
block_size
,
block_size
)([
=
](
auto
idx
)
__device__
{
std
::
size_t
thr_idx
=
idx
.
local
;
std
::
size_t
blk_idx
=
idx
.
group
;
using
type
=
device_type
<
std
::
remove_cv_t
<
typename
decltype
(
output
)
::
value_type
>>
;
using
type
=
device_type
<
std
::
remove_cv_t
<
typename
decltype
(
output
)
::
value_type
>>
;
MIGRAPHX_DEVICE_SHARED
type
lds_data
[
max_block_size
+
1
];
auto
batch_idx
=
batch
.
multi
(
blk_idx
);
auto
data_idx
=
batch_idx
;
// load data to lds and compute the batch max
std
::
size_t
remaining_item_num
=
batch_item_num
;
std
::
size_t
round_item_num
=
(
batch_item_num
+
block_size
-
1
)
/
block_size
*
block_size
;
lds_data
[
max_block_size
]
=
input
[
0
];
std
::
size_t
round_item_num
=
(
batch_item_num
+
block_size
-
1
)
/
block_size
*
block_size
;
lds_data
[
max_block_size
]
=
input
[
0
];
for
(
std
::
size_t
i
=
thr_idx
;
i
<
round_item_num
;
i
+=
block_size
)
{
if
(
i
<
batch_item_num
)
...
...
src/targets/gpu/device/softmax.cpp
View file @
22500e6c
...
...
@@ -15,10 +15,10 @@ namespace device {
void
softmax
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
int
axis
)
{
auto
lens
=
result
.
get_shape
().
lens
();
auto
batch_lens
=
lens
;
auto
lens
=
result
.
get_shape
().
lens
();
auto
batch_lens
=
lens
;
std
::
size_t
batch_item_num
=
lens
[
axis
];
batch_lens
[
axis
]
=
1
;
batch_lens
[
axis
]
=
1
;
migraphx
::
shape
batch_shape
{
result
.
get_shape
().
type
(),
batch_lens
};
hip_visit_all
(
result
,
arg
,
batch_shape
)([
&
](
auto
output
,
auto
input
,
auto
batch
)
{
...
...
@@ -33,15 +33,16 @@ void softmax(hipStream_t stream, const argument& result, const argument& arg, in
launch
(
stream
,
batch_shape
.
elements
()
*
block_size
,
block_size
)([
=
](
auto
idx
)
__device__
{
std
::
size_t
thr_idx
=
idx
.
local
;
std
::
size_t
blk_idx
=
idx
.
group
;
using
type
=
device_type
<
std
::
remove_cv_t
<
typename
decltype
(
output
)
::
value_type
>>
;
using
type
=
device_type
<
std
::
remove_cv_t
<
typename
decltype
(
output
)
::
value_type
>>
;
MIGRAPHX_DEVICE_SHARED
type
lds_data
[
max_block_size
+
1
];
auto
batch_idx
=
batch
.
multi
(
blk_idx
);
auto
data_idx
=
batch_idx
;
// load data to lds and compute the batch max
std
::
size_t
remaining_item_num
=
batch_item_num
;
std
::
size_t
round_item_num
=
(
batch_item_num
+
block_size
-
1
)
/
block_size
*
block_size
;
lds_data
[
max_block_size
]
=
input
[
0
];
std
::
size_t
round_item_num
=
(
batch_item_num
+
block_size
-
1
)
/
block_size
*
block_size
;
lds_data
[
max_block_size
]
=
input
[
0
];
for
(
std
::
size_t
i
=
thr_idx
;
i
<
round_item_num
;
i
+=
block_size
)
{
if
(
i
<
batch_item_num
)
...
...
src/targets/gpu/include/migraphx/gpu/device/reduce_opers.hpp
View file @
22500e6c
...
...
@@ -11,8 +11,11 @@ namespace gpu {
namespace
device
{
template
<
class
T
>
inline
__device__
void
reduce_max
(
T
*
data_ptr
,
std
::
size_t
block_size
,
std
::
size_t
thr_idx
,
std
::
size_t
item_num
,
std
::
size_t
max_index
)
inline
__device__
void
reduce_max
(
T
*
data_ptr
,
std
::
size_t
block_size
,
std
::
size_t
thr_idx
,
std
::
size_t
item_num
,
std
::
size_t
max_index
)
{
while
(
true
)
{
...
...
@@ -39,8 +42,11 @@ reduce_max(T* data_ptr, std::size_t block_size, std::size_t thr_idx, std::size_t
}
template
<
class
T
>
inline
__device__
void
reduce_min
(
T
*
data_ptr
,
std
::
size_t
block_size
,
std
::
size_t
thr_idx
,
std
::
size_t
item_num
,
std
::
size_t
min_index
)
inline
__device__
void
reduce_min
(
T
*
data_ptr
,
std
::
size_t
block_size
,
std
::
size_t
thr_idx
,
std
::
size_t
item_num
,
std
::
size_t
min_index
)
{
while
(
true
)
{
...
...
@@ -67,8 +73,11 @@ reduce_min(T* data_ptr, std::size_t block_size, std::size_t thr_idx, std::size_t
}
template
<
class
T
>
inline
__device__
void
reduce_sum
(
T
*
data_ptr
,
std
::
size_t
block_size
,
std
::
size_t
thr_idx
,
std
::
size_t
item_num
,
std
::
size_t
sum_index
)
inline
__device__
void
reduce_sum
(
T
*
data_ptr
,
std
::
size_t
block_size
,
std
::
size_t
thr_idx
,
std
::
size_t
item_num
,
std
::
size_t
sum_index
)
{
while
(
true
)
{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment