Unverified Commit 21a4d024 authored by mvermeulen's avatar mvermeulen Committed by GitHub
Browse files

Merge branch 'develop' into gather_op

parents 5fbe2128 dcbc9255
......@@ -81,6 +81,7 @@ rocm_enable_clang_tidy(
-modernize-use-override
-modernize-pass-by-value
-modernize-use-default-member-init
-modernize-use-trailing-return-type
-modernize-use-transparent-functors
-performance-type-promotion-in-math-fn
-readability-braces-around-statements
......
......@@ -20,6 +20,7 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-
clang-format-5.0 \
clang-tidy-5.0 \
cmake \
comgr \
curl \
doxygen \
g++-7 \
......@@ -32,14 +33,16 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-
libncurses5-dev \
libnuma-dev \
libpthread-stubs0-dev \
libssl-dev \
python \
python-dev \
python-pip \
rocm-device-libs \
rocm-opencl \
rocm-opencl-dev \
rocminfo \
software-properties-common \
wget && \
wget \
zlib1g-dev && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
......@@ -50,7 +53,7 @@ RUN pip install cget
RUN pip install https://github.com/pfultz2/rclone/archive/master.tar.gz
# Install hcc
RUN rclone -b roc-2.3.x -c fd93baed7dcc4fe8019b5fdc90213bfe7c298245 https://github.com/RadeonOpenCompute/hcc.git /hcc
RUN rclone -b roc-2.6.x -c 0f4c96b7851af2663a7f3ac16ecfb76c7c78a5bf https://github.com/RadeonOpenCompute/hcc.git /hcc
RUN cget -p $PREFIX install hcc,/hcc
# Use hcc
......
......@@ -1557,16 +1557,16 @@ struct onnx_parser
{
switch(attr.type())
{
case onnx::AttributeProto::UNDEFINED: return {};
case onnx::AttributeProto::FLOAT: return literal{attr.f()};
case onnx::AttributeProto::INT: return literal{attr.i()};
case onnx::AttributeProto::STRING: return {};
case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
case onnx::AttributeProto::GRAPH: return {};
case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
case onnx::AttributeProto::STRINGS: return {};
case onnx::AttributeProto::TENSORS: return {};
case onnx::AttributeProto::UNDEFINED:
case onnx::AttributeProto::GRAPH:
case onnx::AttributeProto::STRING:
case onnx::AttributeProto::STRINGS:
case onnx::AttributeProto::TENSORS:
case onnx::AttributeProto::GRAPHS: return {};
}
MIGRAPHX_THROW("Invalid attribute type");
......@@ -1580,47 +1580,41 @@ struct onnx_parser
const std::string& s = t.raw_data();
switch(t.data_type())
{
case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
case onnx::TensorProto::UINT8: throw std::runtime_error("");
case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
case onnx::TensorProto::UINT16:
return create_literal(shape::int32_type, dims, s.data());
case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
case onnx::TensorProto::STRING: throw std::runtime_error("");
case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
case onnx::TensorProto::FLOAT16:
return create_literal(shape::half_type, dims, s.data());
case onnx::TensorProto::DOUBLE:
return create_literal(shape::double_type, dims, s.data());
case onnx::TensorProto::UINT32: throw std::runtime_error("");
case onnx::TensorProto::UINT64: throw std::runtime_error("");
case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
case onnx::TensorProto::INT8:
case onnx::TensorProto::UINT16:
case onnx::TensorProto::INT16:
case onnx::TensorProto::INT32:
case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
case onnx::TensorProto::UINT8:
case onnx::TensorProto::STRING:
case onnx::TensorProto::UNDEFINED:
case onnx::TensorProto::UINT32:
case onnx::TensorProto::UINT64:
case onnx::TensorProto::COMPLEX64:
case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
}
MIGRAPHX_THROW("Invalid tensor type");
}
switch(t.data_type())
{
case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
case onnx::TensorProto::FLOAT:
return create_literal(shape::float_type, dims, t.float_data());
case onnx::TensorProto::UINT8: throw std::runtime_error("");
case onnx::TensorProto::INT8:
return create_literal(shape::int32_type, dims, t.int32_data());
case onnx::TensorProto::UINT16:
return create_literal(shape::int32_type, dims, t.int32_data());
case onnx::TensorProto::INT16:
return create_literal(shape::int32_type, dims, t.int32_data());
case onnx::TensorProto::INT32:
case onnx::TensorProto::BOOL:
return create_literal(shape::int32_type, dims, t.int32_data());
case onnx::TensorProto::INT64:
return create_literal(shape::int64_type, dims, t.int64_data());
case onnx::TensorProto::STRING: throw std::runtime_error("");
case onnx::TensorProto::BOOL:
return create_literal(shape::int32_type, dims, t.int32_data());
case onnx::TensorProto::DOUBLE:
return create_literal(shape::double_type, dims, t.double_data());
case onnx::TensorProto::FLOAT:
return create_literal(shape::float_type, dims, t.float_data());
case onnx::TensorProto::FLOAT16:
{
std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
......@@ -1631,11 +1625,12 @@ struct onnx_parser
[](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
return create_literal(shape::half_type, dims, data_half);
}
case onnx::TensorProto::DOUBLE:
return create_literal(shape::double_type, dims, t.double_data());
case onnx::TensorProto::UINT32: throw std::runtime_error("");
case onnx::TensorProto::UINT64: throw std::runtime_error("");
case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
case onnx::TensorProto::UNDEFINED:
case onnx::TensorProto::UINT8:
case onnx::TensorProto::STRING:
case onnx::TensorProto::UINT32:
case onnx::TensorProto::UINT64:
case onnx::TensorProto::COMPLEX64:
case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
}
MIGRAPHX_THROW("Invalid tensor type");
......@@ -1663,28 +1658,23 @@ struct onnx_parser
shape::type_t shape_type{};
switch(t.tensor_type().elem_type())
{
case onnx::TensorProto::UNDEFINED:
break; // throw std::runtime_error("Unsupported type UNDEFINED");
case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
case onnx::TensorProto::UINT8:
break; // throw std::runtime_error("Unsupported type UINT8");
case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
case onnx::TensorProto::STRING:
break; // throw std::runtime_error("Unsupported type STRING");
case onnx::TensorProto::BOOL:
break; // throw std::runtime_error("Unsupported type BOOL");
case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
case onnx::TensorProto::UINT8:
case onnx::TensorProto::STRING:
case onnx::TensorProto::BOOL:
case onnx::TensorProto::UNDEFINED:
case onnx::TensorProto::COMPLEX64:
break; // throw std::runtime_error("Unsupported type COMPLEX64");
case onnx::TensorProto::COMPLEX128:
break; // throw std::runtime_error("Unsupported type COMPLEX128");
break; // throw std::runtime_error("Unsupported type");
}
std::vector<std::size_t> dims;
auto&& tensor_dims = t.tensor_type().shape().dim();
......
......@@ -887,72 +887,56 @@ struct tf_parser
shape::type_t shape_type{};
switch(t)
{
case tensorflow::DataType::DT_INVALID:
break; // throw std::runtime_error("Unsupported type UNDEFINED");
case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
case tensorflow::DataType::DT_UINT8:
break; // throw std::runtime_error("Unsupported type UINT8");
case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;
case tensorflow::DataType::DT_INVALID:
case tensorflow::DataType::DT_UINT8:
case tensorflow::DataType::DT_STRING:
break; // throw std::runtime_error("Unsupported type STRING");
case tensorflow::DataType::DT_COMPLEX64:
break; // throw std::runtime_error("Unsupported type COMPLEX64");
case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
case tensorflow::DataType::DT_BOOL:
break; // throw std::runtime_error("Unsupported type BOOL");
case tensorflow::DataType::DT_QINT8:
break; // throw std::runtime_error("Unsupported type QINT8");
case tensorflow::DataType::DT_QUINT8:
break; // throw std::runtime_error("Unsupported type QUINT8");
case tensorflow::DataType::DT_QINT32:
break; // throw std::runtime_error("Unsupported type QINT32");
case tensorflow::DataType::DT_BFLOAT16:
break; // throw std::runtime_error("Unsupported type BFLOAT16");
case tensorflow::DataType::DT_QINT16:
break; // throw std::runtime_error("Unsupported type QINT16");
case tensorflow::DataType::DT_QUINT16:
break; // throw std::runtime_error("Unsupported type QUINT16");
case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
case tensorflow::DataType::DT_COMPLEX128:
break; // throw std::runtime_error("Unsupported type COMPLEX128");
case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
case tensorflow::DataType::DT_RESOURCE:
break; // throw std::runtime_error("Unsupported type RESOURCE");
case tensorflow::DataType::DT_VARIANT:
break; // throw std::runtime_error("Unsupported type VARIANT");
case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
case tensorflow::DataType::DT_UINT64:
shape_type = shape::uint64_type;
break;
// tf pb should not use these types
case tensorflow::DataType::DT_FLOAT_REF: break;
case tensorflow::DataType::DT_DOUBLE_REF: break;
case tensorflow::DataType::DT_INT32_REF: break;
case tensorflow::DataType::DT_UINT8_REF: break;
case tensorflow::DataType::DT_INT16_REF: break;
case tensorflow::DataType::DT_INT8_REF: break;
case tensorflow::DataType::DT_STRING_REF: break;
case tensorflow::DataType::DT_COMPLEX64_REF: break;
case tensorflow::DataType::DT_INT64_REF: break;
case tensorflow::DataType::DT_BOOL_REF: break;
case tensorflow::DataType::DT_QINT8_REF: break;
case tensorflow::DataType::DT_QUINT8_REF: break;
case tensorflow::DataType::DT_QINT32_REF: break;
case tensorflow::DataType::DT_BFLOAT16_REF: break;
case tensorflow::DataType::DT_QINT16_REF: break;
case tensorflow::DataType::DT_QUINT16_REF: break;
case tensorflow::DataType::DT_UINT16_REF: break;
case tensorflow::DataType::DT_COMPLEX128_REF: break;
case tensorflow::DataType::DT_HALF_REF: break;
case tensorflow::DataType::DT_RESOURCE_REF: break;
case tensorflow::DataType::DT_VARIANT_REF: break;
case tensorflow::DataType::DT_UINT32_REF: break;
case tensorflow::DataType::DT_UINT64_REF: break;
case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_: break;
case tensorflow::DataType::DT_FLOAT_REF:
case tensorflow::DataType::DT_DOUBLE_REF:
case tensorflow::DataType::DT_INT32_REF:
case tensorflow::DataType::DT_UINT8_REF:
case tensorflow::DataType::DT_INT16_REF:
case tensorflow::DataType::DT_INT8_REF:
case tensorflow::DataType::DT_STRING_REF:
case tensorflow::DataType::DT_COMPLEX64_REF:
case tensorflow::DataType::DT_INT64_REF:
case tensorflow::DataType::DT_BOOL_REF:
case tensorflow::DataType::DT_QINT8_REF:
case tensorflow::DataType::DT_QUINT8_REF:
case tensorflow::DataType::DT_QINT32_REF:
case tensorflow::DataType::DT_BFLOAT16_REF:
case tensorflow::DataType::DT_QINT16_REF:
case tensorflow::DataType::DT_QUINT16_REF:
case tensorflow::DataType::DT_UINT16_REF:
case tensorflow::DataType::DT_COMPLEX128_REF:
case tensorflow::DataType::DT_HALF_REF:
case tensorflow::DataType::DT_RESOURCE_REF:
case tensorflow::DataType::DT_VARIANT_REF:
case tensorflow::DataType::DT_UINT32_REF:
case tensorflow::DataType::DT_UINT64_REF:
case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
}
return shape_type;
......@@ -967,61 +951,59 @@ struct tf_parser
const std::string& s = t.tensor_content();
switch(t.dtype())
{
case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
case tensorflow::DataType::DT_FLOAT:
return literal{{shape::float_type, dims}, s.data()};
case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
case tensorflow::DataType::DT_BOOL:
case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
case tensorflow::DataType::DT_UINT16:
return literal{{shape::uint16_type, dims}, s.data()};
case tensorflow::DataType::DT_INT16:
return literal{{shape::int16_type, dims}, s.data()};
case tensorflow::DataType::DT_INT32:
return literal{{shape::int32_type, dims}, s.data()};
case tensorflow::DataType::DT_INT64:
return literal{{shape::int64_type, dims}, s.data()};
case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
case tensorflow::DataType::DT_BOOL: return literal{{shape::int8_type, dims}, s.data()};
case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
case tensorflow::DataType::DT_DOUBLE:
return literal{{shape::double_type, dims}, s.data()};
case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_INVALID:
case tensorflow::DataType::DT_UINT8:
case tensorflow::DataType::DT_STRING:
case tensorflow::DataType::DT_UINT32:
case tensorflow::DataType::DT_UINT64:
case tensorflow::DataType::DT_COMPLEX64:
case tensorflow::DataType::DT_COMPLEX128:
case tensorflow::DataType::DT_QINT8:
case tensorflow::DataType::DT_QUINT8:
case tensorflow::DataType::DT_QINT32:
case tensorflow::DataType::DT_BFLOAT16:
case tensorflow::DataType::DT_QINT16:
case tensorflow::DataType::DT_QUINT16:
case tensorflow::DataType::DT_RESOURCE:
case tensorflow::DataType::DT_VARIANT:
case tensorflow::DataType::DT_FLOAT_REF:
case tensorflow::DataType::DT_DOUBLE_REF:
case tensorflow::DataType::DT_INT32_REF:
case tensorflow::DataType::DT_UINT8_REF:
case tensorflow::DataType::DT_INT16_REF:
case tensorflow::DataType::DT_INT8_REF:
case tensorflow::DataType::DT_STRING_REF:
case tensorflow::DataType::DT_COMPLEX64_REF:
case tensorflow::DataType::DT_INT64_REF:
case tensorflow::DataType::DT_BOOL_REF:
case tensorflow::DataType::DT_QINT8_REF:
case tensorflow::DataType::DT_QUINT8_REF:
case tensorflow::DataType::DT_QINT32_REF:
case tensorflow::DataType::DT_BFLOAT16_REF:
case tensorflow::DataType::DT_QINT16_REF:
case tensorflow::DataType::DT_QUINT16_REF:
case tensorflow::DataType::DT_UINT16_REF:
case tensorflow::DataType::DT_COMPLEX128_REF:
case tensorflow::DataType::DT_HALF_REF:
case tensorflow::DataType::DT_RESOURCE_REF:
case tensorflow::DataType::DT_VARIANT_REF:
case tensorflow::DataType::DT_UINT32_REF:
case tensorflow::DataType::DT_UINT64_REF:
case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
throw std::runtime_error("");
case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
throw std::runtime_error("");
}
......@@ -1029,11 +1011,9 @@ struct tf_parser
}
switch(t.dtype())
{
case tensorflow::DataType::DT_INVALID: throw std::runtime_error("");
case tensorflow::DataType::DT_FLOAT:
return create_literal(
shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
case tensorflow::DataType::DT_UINT8: throw std::runtime_error("");
case tensorflow::DataType::DT_INT8:
return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
case tensorflow::DataType::DT_UINT16:
......@@ -1045,7 +1025,6 @@ struct tf_parser
case tensorflow::DataType::DT_INT64:
return create_literal(
shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
case tensorflow::DataType::DT_STRING: throw std::runtime_error("");
case tensorflow::DataType::DT_BOOL:
return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
case tensorflow::DataType::DT_HALF:
......@@ -1061,43 +1040,45 @@ struct tf_parser
}
case tensorflow::DataType::DT_DOUBLE:
return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
case tensorflow::DataType::DT_UINT32: throw std::runtime_error("");
case tensorflow::DataType::DT_UINT64: throw std::runtime_error("");
case tensorflow::DataType::DT_COMPLEX64: throw std::runtime_error("");
case tensorflow::DataType::DT_COMPLEX128: throw std::runtime_error("");
case tensorflow::DataType::DT_QINT8: throw std::runtime_error("");
case tensorflow::DataType::DT_QUINT8: throw std::runtime_error("");
case tensorflow::DataType::DT_QINT32: throw std::runtime_error("");
case tensorflow::DataType::DT_BFLOAT16: throw std::runtime_error("");
case tensorflow::DataType::DT_QINT16: throw std::runtime_error("");
case tensorflow::DataType::DT_QUINT16: throw std::runtime_error("");
case tensorflow::DataType::DT_RESOURCE: throw std::runtime_error("");
case tensorflow::DataType::DT_VARIANT: throw std::runtime_error("");
case tensorflow::DataType::DT_FLOAT_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_DOUBLE_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_INT32_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_UINT8_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_INT16_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_INT8_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_STRING_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_COMPLEX64_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_INT64_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_BOOL_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_QINT8_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_QUINT8_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_QINT32_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_BFLOAT16_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_QINT16_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_QUINT16_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_UINT16_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_COMPLEX128_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_HALF_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_RESOURCE_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_VARIANT_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_UINT32_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_UINT64_REF: throw std::runtime_error("");
case tensorflow::DataType::DT_INVALID:
case tensorflow::DataType::DT_UINT8:
case tensorflow::DataType::DT_STRING:
case tensorflow::DataType::DT_UINT32:
case tensorflow::DataType::DT_UINT64:
case tensorflow::DataType::DT_COMPLEX64:
case tensorflow::DataType::DT_COMPLEX128:
case tensorflow::DataType::DT_QINT8:
case tensorflow::DataType::DT_QUINT8:
case tensorflow::DataType::DT_QINT32:
case tensorflow::DataType::DT_BFLOAT16:
case tensorflow::DataType::DT_QINT16:
case tensorflow::DataType::DT_QUINT16:
case tensorflow::DataType::DT_RESOURCE:
case tensorflow::DataType::DT_VARIANT:
case tensorflow::DataType::DT_FLOAT_REF:
case tensorflow::DataType::DT_DOUBLE_REF:
case tensorflow::DataType::DT_INT32_REF:
case tensorflow::DataType::DT_UINT8_REF:
case tensorflow::DataType::DT_INT16_REF:
case tensorflow::DataType::DT_INT8_REF:
case tensorflow::DataType::DT_STRING_REF:
case tensorflow::DataType::DT_COMPLEX64_REF:
case tensorflow::DataType::DT_INT64_REF:
case tensorflow::DataType::DT_BOOL_REF:
case tensorflow::DataType::DT_QINT8_REF:
case tensorflow::DataType::DT_QUINT8_REF:
case tensorflow::DataType::DT_QINT32_REF:
case tensorflow::DataType::DT_BFLOAT16_REF:
case tensorflow::DataType::DT_QINT16_REF:
case tensorflow::DataType::DT_QUINT16_REF:
case tensorflow::DataType::DT_UINT16_REF:
case tensorflow::DataType::DT_COMPLEX128_REF:
case tensorflow::DataType::DT_HALF_REF:
case tensorflow::DataType::DT_RESOURCE_REF:
case tensorflow::DataType::DT_VARIANT_REF:
case tensorflow::DataType::DT_UINT32_REF:
case tensorflow::DataType::DT_UINT64_REF:
case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
throw std::runtime_error("");
case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
throw std::runtime_error("");
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment