Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
17b9cfb9
"data/vscode:/vscode.git/clone" did not exist on "1185f0b1a09abe59756f73ac5ed16eaf5c9c381f"
Commit
17b9cfb9
authored
Nov 26, 2018
by
Scott Thornton
Browse files
Formatting
parent
5b68317c
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
25 additions
and
25 deletions
+25
-25
src/include/migraphx/operators.hpp
src/include/migraphx/operators.hpp
+11
-10
src/onnx/onnx.cpp
src/onnx/onnx.cpp
+14
-15
No files found.
src/include/migraphx/operators.hpp
View file @
17b9cfb9
...
@@ -285,10 +285,10 @@ struct transpose
...
@@ -285,10 +285,10 @@ struct transpose
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
};
// The contiguous operator takes a non-standard input tensor and returns
// The contiguous operator takes a non-standard input tensor and returns
// the same tensor but in standard form. For example, if input tensor A which has lens = (4,5)
// the same tensor but in standard form. For example, if input tensor A which has lens = (4,5)
// is first transposed, i.e. lens = (5,4), this tensor's data layout remained the same
// is first transposed, i.e. lens = (5,4), this tensor's data layout remained the same
// during the transpose operation; only it's shape lengths and strides were changed.
// during the transpose operation; only it's shape lengths and strides were changed.
// This leaves the tensor in a non-standard form. The contiguous operator copies the
// This leaves the tensor in a non-standard form. The contiguous operator copies the
// underlying data such that resulting tensor is returned to a standard form.
// underlying data such that resulting tensor is returned to a standard form.
struct
contiguous
struct
contiguous
...
@@ -716,13 +716,14 @@ struct flatten
...
@@ -716,13 +716,14 @@ struct flatten
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
};
// The broadcast operator performs the numpy-style broadcasting of an axis of a given tensor. This is achieved
// The broadcast operator performs the numpy-style broadcasting of an axis of a given tensor. This
// primarily by setting the stride of the broadcasted axis to zero. Linear indicies are computed from multi-indicies
// is achieved primarily by setting the stride of the broadcasted axis to zero. Linear indicies are
// by computing the inner product on the multi-index with the strides. For example, if we have a tensor A(2,3) it has
// computed from multi-indicies by computing the inner product on the multi-index with the strides.
// lengths of (2,3) and strides of (3,1). If we want to compute the linear offset that corresponds to the element
// For example, if we have a tensor A(2,3) it has lengths of (2,3) and strides of (3,1). If we want
// on the 2nd row (i = 1) and 3rd column (j = 2), we compute the following inner product (1,2) dot (3, 1) =
// to compute the linear offset that corresponds to the element on the 2nd row (i = 1) and 3rd
// 1*3 + 2*1 = 5. It is obvious from there that we can negate the effects of a given axis by setting the
// column (j = 2), we compute the following inner product (1,2) dot (3, 1) = 1*3 + 2*1 = 5. It is
// stride of that axis to zero.
// obvious from there that we can negate the effects of a given axis by setting the stride of that
// axis to zero.
struct
broadcast
struct
broadcast
{
{
uint64_t
axis
=
0
;
uint64_t
axis
=
0
;
...
...
src/onnx/onnx.cpp
View file @
17b9cfb9
...
@@ -43,7 +43,7 @@ struct onnx_parser
...
@@ -43,7 +43,7 @@ struct onnx_parser
using
op_func
=
std
::
function
<
instruction_ref
(
attribute_map
,
std
::
vector
<
instruction_ref
>
)
>
;
using
op_func
=
std
::
function
<
instruction_ref
(
attribute_map
,
std
::
vector
<
instruction_ref
>
)
>
;
node_map
nodes
;
node_map
nodes
;
std
::
unordered_map
<
std
::
string
,
instruction_ref
>
instructions
;
std
::
unordered_map
<
std
::
string
,
instruction_ref
>
instructions
;
program
prog
=
program
();
program
prog
=
program
();
bool
is_pytorch
=
false
;
bool
is_pytorch
=
false
;
std
::
unordered_map
<
std
::
string
,
op_func
>
ops
;
std
::
unordered_map
<
std
::
string
,
op_func
>
ops
;
...
@@ -140,7 +140,7 @@ struct onnx_parser
...
@@ -140,7 +140,7 @@ struct onnx_parser
// Copy the larger vector to output_lens
// Copy the larger vector to output_lens
std
::
vector
<
std
::
size_t
>
output_lens
=
*
s1
;
std
::
vector
<
std
::
size_t
>
output_lens
=
*
s1
;
auto
offset
=
s1
->
size
()
-
s0
->
size
();
auto
offset
=
s1
->
size
()
-
s0
->
size
();
std
::
transform
(
s0
->
begin
(),
std
::
transform
(
s0
->
begin
(),
s0
->
end
(),
s0
->
end
(),
s1
->
begin
()
+
offset
,
s1
->
begin
()
+
offset
,
...
@@ -182,17 +182,17 @@ struct onnx_parser
...
@@ -182,17 +182,17 @@ struct onnx_parser
op
::
convolution
op
;
op
::
convolution
op
;
if
(
contains
(
attributes
,
"pads"
))
if
(
contains
(
attributes
,
"pads"
))
{
{
if
(
contains
(
attributes
,
"auto_pad"
))
if
(
contains
(
attributes
,
"auto_pad"
))
{
{
MIGRAPH_THROW
(
"auto_pad and padding cannot be specified simultaneously"
);
MIGRAPH_THROW
(
"auto_pad and padding cannot be specified simultaneously"
);
}
}
std
::
vector
<
std
::
size_t
>
padding
(
4
);
std
::
vector
<
std
::
size_t
>
padding
(
4
);
copy
(
attributes
[
"pads"
].
ints
(),
padding
.
begin
());
copy
(
attributes
[
"pads"
].
ints
(),
padding
.
begin
());
if
(
padding
.
size
()
!=
4
)
if
(
padding
.
size
()
!=
4
)
{
{
MIGRAPH_THROW
(
"padding should have 4 values"
);
MIGRAPH_THROW
(
"padding should have 4 values"
);
}
}
if
(
padding
[
0
]
!=
padding
[
2
]
||
padding
[
1
]
!=
padding
[
3
])
if
(
padding
[
0
]
!=
padding
[
2
]
||
padding
[
1
]
!=
padding
[
3
])
{
{
MIGRAPH_THROW
(
"migraphx does not support asymetric padding"
);
MIGRAPH_THROW
(
"migraphx does not support asymetric padding"
);
}
}
...
@@ -207,15 +207,15 @@ struct onnx_parser
...
@@ -207,15 +207,15 @@ struct onnx_parser
{
{
copy
(
attributes
[
"dilations"
].
ints
(),
op
.
dilation
.
begin
());
copy
(
attributes
[
"dilations"
].
ints
(),
op
.
dilation
.
begin
());
}
}
if
(
contains
(
attributes
,
"auto_pad"
))
if
(
contains
(
attributes
,
"auto_pad"
))
{
{
auto
s
=
attributes
[
"auto_pad"
].
s
();
auto
s
=
attributes
[
"auto_pad"
].
s
();
if
(
contains
(
attributes
,
"pads"
)
and
to_upper
(
s
)
!=
"NOTSET"
)
if
(
contains
(
attributes
,
"pads"
)
and
to_upper
(
s
)
!=
"NOTSET"
)
{
{
MIGRAPH_THROW
(
"auto_pad and padding cannot be specified simultaneously"
);
MIGRAPH_THROW
(
"auto_pad and padding cannot be specified simultaneously"
);
}
}
if
(
s
.
find
(
"SAME"
)
>=
0
)
if
(
s
.
find
(
"SAME"
)
>=
0
)
{
{
op
.
padding_mode
=
op
::
convolution
::
same
;
op
.
padding_mode
=
op
::
convolution
::
same
;
}
}
...
@@ -244,11 +244,11 @@ struct onnx_parser
...
@@ -244,11 +244,11 @@ struct onnx_parser
{
{
std
::
vector
<
std
::
size_t
>
padding
(
4
);
std
::
vector
<
std
::
size_t
>
padding
(
4
);
copy
(
attributes
[
"pads"
].
ints
(),
padding
.
begin
());
copy
(
attributes
[
"pads"
].
ints
(),
padding
.
begin
());
if
(
padding
.
size
()
!=
4
)
if
(
padding
.
size
()
!=
4
)
{
{
MIGRAPH_THROW
(
"padding should have 4 values"
);
MIGRAPH_THROW
(
"padding should have 4 values"
);
}
}
if
(
padding
[
0
]
!=
padding
[
2
]
||
padding
[
1
]
!=
padding
[
3
])
if
(
padding
[
0
]
!=
padding
[
2
]
||
padding
[
1
]
!=
padding
[
3
])
{
{
MIGRAPH_THROW
(
"migraphx does not support asymetric padding"
);
MIGRAPH_THROW
(
"migraphx does not support asymetric padding"
);
}
}
...
@@ -263,10 +263,10 @@ struct onnx_parser
...
@@ -263,10 +263,10 @@ struct onnx_parser
{
{
copy
(
attributes
[
"kernel_shape"
].
ints
(),
op
.
lengths
.
begin
());
copy
(
attributes
[
"kernel_shape"
].
ints
(),
op
.
lengths
.
begin
());
}
}
if
(
contains
(
attributes
,
"auto_pad"
))
if
(
contains
(
attributes
,
"auto_pad"
))
{
{
auto
s
=
attributes
[
"auto_pad"
].
s
();
auto
s
=
attributes
[
"auto_pad"
].
s
();
if
(
to_upper
(
s
)
!=
"NOTSET"
)
if
(
to_upper
(
s
)
!=
"NOTSET"
)
{
{
MIGRAPH_THROW
(
"auto_pad is not supported for pooling"
);
MIGRAPH_THROW
(
"auto_pad is not supported for pooling"
);
}
}
...
@@ -482,9 +482,8 @@ struct onnx_parser
...
@@ -482,9 +482,8 @@ struct onnx_parser
if
(
model
.
ParseFromIstream
(
&
is
))
if
(
model
.
ParseFromIstream
(
&
is
))
{
{
auto
str_toupper
=
[](
std
::
string
s
)
{
auto
str_toupper
=
[](
std
::
string
s
)
{
std
::
transform
(
s
.
begin
(),
s
.
end
(),
s
.
begin
(),
std
::
transform
(
[](
unsigned
char
c
){
return
std
::
toupper
(
c
);
s
.
begin
(),
s
.
end
(),
s
.
begin
(),
[](
unsigned
char
c
)
{
return
std
::
toupper
(
c
);
});
});
return
s
;
return
s
;
};
};
auto
producer_name
=
str_toupper
(
model
.
producer_name
());
auto
producer_name
=
str_toupper
(
model
.
producer_name
());
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment