Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
17a269a4
Commit
17a269a4
authored
Jun 24, 2019
by
Shucai Xiao
Browse files
clang format
parent
63773ec0
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
12 additions
and
15 deletions
+12
-15
src/targets/gpu/device/softmax.cpp
src/targets/gpu/device/softmax.cpp
+12
-15
No files found.
src/targets/gpu/device/softmax.cpp
View file @
17a269a4
...
@@ -13,8 +13,7 @@ namespace gpu {
...
@@ -13,8 +13,7 @@ namespace gpu {
namespace
device
{
namespace
device
{
template
<
class
T
>
template
<
class
T
>
__device__
void
__device__
void
reduce_max
(
T
*
data_ptr
,
size_t
block_size
,
size_t
thr_idx
,
size_t
item_num
)
reduce_max
(
T
*
data_ptr
,
size_t
block_size
,
size_t
thr_idx
,
size_t
item_num
)
{
{
auto
stride
=
(
item_num
+
1
)
/
2
;
auto
stride
=
(
item_num
+
1
)
/
2
;
while
(
true
)
while
(
true
)
...
@@ -42,8 +41,7 @@ reduce_max(T* data_ptr, size_t block_size, size_t thr_idx, size_t item_num)
...
@@ -42,8 +41,7 @@ reduce_max(T* data_ptr, size_t block_size, size_t thr_idx, size_t item_num)
}
}
template
<
class
T
>
template
<
class
T
>
__device__
void
__device__
void
reduce_sum
(
T
*
data_ptr
,
size_t
block_size
,
size_t
thr_idx
,
size_t
item_num
)
reduce_sum
(
T
*
data_ptr
,
size_t
block_size
,
size_t
thr_idx
,
size_t
item_num
)
{
{
auto
stride
=
(
item_num
+
1
)
/
2
;
auto
stride
=
(
item_num
+
1
)
/
2
;
while
(
true
)
while
(
true
)
...
@@ -70,10 +68,10 @@ reduce_sum(T* data_ptr, size_t block_size, size_t thr_idx, size_t item_num)
...
@@ -70,10 +68,10 @@ reduce_sum(T* data_ptr, size_t block_size, size_t thr_idx, size_t item_num)
void
softmax
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
int
axis
)
void
softmax
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
int
axis
)
{
{
auto
lens
=
result
.
get_shape
().
lens
();
auto
lens
=
result
.
get_shape
().
lens
();
auto
batch_lens
=
lens
;
auto
batch_lens
=
lens
;
size_t
batch_item_num
=
lens
[
axis
];
size_t
batch_item_num
=
lens
[
axis
];
batch_lens
[
axis
]
=
1
;
batch_lens
[
axis
]
=
1
;
migraphx
::
shape
batch_shape
{
result
.
get_shape
().
type
(),
batch_lens
};
migraphx
::
shape
batch_shape
{
result
.
get_shape
().
type
(),
batch_lens
};
visit_all
(
result
,
arg
)([
&
](
auto
output
,
auto
input
)
{
visit_all
(
result
,
arg
)([
&
](
auto
output
,
auto
input
)
{
...
@@ -101,9 +99,9 @@ void softmax(hipStream_t stream, const argument& result, const argument& arg, in
...
@@ -101,9 +99,9 @@ void softmax(hipStream_t stream, const argument& result, const argument& arg, in
auto
batch_idx
=
desc_batch
.
multi
(
blk_idx
);
auto
batch_idx
=
desc_batch
.
multi
(
blk_idx
);
auto
data_idx
=
batch_idx
;
auto
data_idx
=
batch_idx
;
// load data to lds and compute the batch max
// load data to lds and compute the batch max
size_t
remaining_item_num
=
batch_item_num
;
size_t
remaining_item_num
=
batch_item_num
;
size_t
round_item_num
=
(
batch_item_num
+
block_size
-
1
)
/
block_size
*
block_size
;
size_t
round_item_num
=
(
batch_item_num
+
block_size
-
1
)
/
block_size
*
block_size
;
lds_data
[
block_size
]
=
input_ptr
[
0
];
lds_data
[
block_size
]
=
input_ptr
[
0
];
for
(
size_t
i
=
thr_idx
;
i
<
round_item_num
;
i
+=
block_size
)
for
(
size_t
i
=
thr_idx
;
i
<
round_item_num
;
i
+=
block_size
)
{
{
if
(
i
<
batch_item_num
)
if
(
i
<
batch_item_num
)
...
@@ -124,14 +122,13 @@ void softmax(hipStream_t stream, const argument& result, const argument& arg, in
...
@@ -124,14 +122,13 @@ void softmax(hipStream_t stream, const argument& result, const argument& arg, in
__syncthreads
();
__syncthreads
();
lds_data
[
block_size
]
=
0
;
lds_data
[
block_size
]
=
0
;
remaining_item_num
=
batch_item_num
;
remaining_item_num
=
batch_item_num
;
for
(
size_t
i
=
thr_idx
;
i
<
round_item_num
;
i
+=
block_size
)
for
(
size_t
i
=
thr_idx
;
i
<
round_item_num
;
i
+=
block_size
)
{
{
if
(
i
<
batch_item_num
)
if
(
i
<
batch_item_num
)
{
{
data_idx
[
axis
]
=
i
;
data_idx
[
axis
]
=
i
;
lds_data
[
thr_idx
]
=
lds_data
[
thr_idx
]
=
input_ptr
[
desc_data
.
linear
(
data_idx
)]
-
batch_max
;
input_ptr
[
desc_data
.
linear
(
data_idx
)]
-
batch_max
;
lds_data
[
thr_idx
]
=
::
exp
(
to_hip_type
(
lds_data
[
thr_idx
]));
lds_data
[
thr_idx
]
=
::
exp
(
to_hip_type
(
lds_data
[
thr_idx
]));
}
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment