Commit 17a269a4 authored by Shucai Xiao's avatar Shucai Xiao
Browse files

clang format

parent 63773ec0
...@@ -13,8 +13,7 @@ namespace gpu { ...@@ -13,8 +13,7 @@ namespace gpu {
namespace device { namespace device {
template <class T> template <class T>
__device__ void __device__ void reduce_max(T* data_ptr, size_t block_size, size_t thr_idx, size_t item_num)
reduce_max(T* data_ptr, size_t block_size, size_t thr_idx, size_t item_num)
{ {
auto stride = (item_num + 1) / 2; auto stride = (item_num + 1) / 2;
while(true) while(true)
...@@ -42,8 +41,7 @@ reduce_max(T* data_ptr, size_t block_size, size_t thr_idx, size_t item_num) ...@@ -42,8 +41,7 @@ reduce_max(T* data_ptr, size_t block_size, size_t thr_idx, size_t item_num)
} }
template <class T> template <class T>
__device__ void __device__ void reduce_sum(T* data_ptr, size_t block_size, size_t thr_idx, size_t item_num)
reduce_sum(T* data_ptr, size_t block_size, size_t thr_idx, size_t item_num)
{ {
auto stride = (item_num + 1) / 2; auto stride = (item_num + 1) / 2;
while(true) while(true)
...@@ -70,10 +68,10 @@ reduce_sum(T* data_ptr, size_t block_size, size_t thr_idx, size_t item_num) ...@@ -70,10 +68,10 @@ reduce_sum(T* data_ptr, size_t block_size, size_t thr_idx, size_t item_num)
void softmax(hipStream_t stream, const argument& result, const argument& arg, int axis) void softmax(hipStream_t stream, const argument& result, const argument& arg, int axis)
{ {
auto lens = result.get_shape().lens(); auto lens = result.get_shape().lens();
auto batch_lens = lens; auto batch_lens = lens;
size_t batch_item_num = lens[axis]; size_t batch_item_num = lens[axis];
batch_lens[axis] = 1; batch_lens[axis] = 1;
migraphx::shape batch_shape{result.get_shape().type(), batch_lens}; migraphx::shape batch_shape{result.get_shape().type(), batch_lens};
visit_all(result, arg)([&](auto output, auto input) { visit_all(result, arg)([&](auto output, auto input) {
...@@ -101,9 +99,9 @@ void softmax(hipStream_t stream, const argument& result, const argument& arg, in ...@@ -101,9 +99,9 @@ void softmax(hipStream_t stream, const argument& result, const argument& arg, in
auto batch_idx = desc_batch.multi(blk_idx); auto batch_idx = desc_batch.multi(blk_idx);
auto data_idx = batch_idx; auto data_idx = batch_idx;
// load data to lds and compute the batch max // load data to lds and compute the batch max
size_t remaining_item_num = batch_item_num; size_t remaining_item_num = batch_item_num;
size_t round_item_num = (batch_item_num + block_size - 1) / block_size * block_size; size_t round_item_num = (batch_item_num + block_size - 1) / block_size * block_size;
lds_data[block_size] = input_ptr[0]; lds_data[block_size] = input_ptr[0];
for(size_t i = thr_idx; i < round_item_num; i += block_size) for(size_t i = thr_idx; i < round_item_num; i += block_size)
{ {
if(i < batch_item_num) if(i < batch_item_num)
...@@ -124,14 +122,13 @@ void softmax(hipStream_t stream, const argument& result, const argument& arg, in ...@@ -124,14 +122,13 @@ void softmax(hipStream_t stream, const argument& result, const argument& arg, in
__syncthreads(); __syncthreads();
lds_data[block_size] = 0; lds_data[block_size] = 0;
remaining_item_num = batch_item_num; remaining_item_num = batch_item_num;
for(size_t i = thr_idx; i < round_item_num; i += block_size) for(size_t i = thr_idx; i < round_item_num; i += block_size)
{ {
if(i < batch_item_num) if(i < batch_item_num)
{ {
data_idx[axis] = i; data_idx[axis] = i;
lds_data[thr_idx] = lds_data[thr_idx] = input_ptr[desc_data.linear(data_idx)] - batch_max;
input_ptr[desc_data.linear(data_idx)] - batch_max;
lds_data[thr_idx] = ::exp(to_hip_type(lds_data[thr_idx])); lds_data[thr_idx] = ::exp(to_hip_type(lds_data[thr_idx]));
} }
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment