Commit 15a7d96a authored by Paul's avatar Paul
Browse files

Merge from develop

parents 4c370d64 eb094e57
......@@ -51,7 +51,18 @@ struct dnnl_binary : dnnl_op<dnnl_binary, dnnl::binary>
auto r = s0;
if(s0 != s1 or not s0.packed())
{
r = shape{s0.type(), s0.lens()};
if(s0.packed() != s1.packed())
{
r = s0.packed() ? s0 : s1;
}
else if(s0.broadcasted() != s1.broadcasted())
{
r = s0.broadcasted() ? s1.with_lens(s0.lens()) : s0.with_lens(s0.lens());
}
else
{
r = {s0.type(), s0.lens()};
}
}
// Call to get_primitive to make sure an algo is available
this->get_primitive(this->to_memory_desc(r, inputs));
......
......@@ -43,9 +43,9 @@ struct dnnl_convolution
return {MIGRAPHX_DNNL_PREFIX(ARG_SRC), MIGRAPHX_DNNL_PREFIX(ARG_WEIGHTS)};
}
shape adjust_shape(const shape& x, int i) const
shape adjust_shape(const shape& x, int i, const shape& output) const
{
auto s = base_adjust_shape(x);
auto s = base_adjust_shape(x, output);
if(i == 1 and op.group > 1)
{
// TODO: Add support for transposed weights
......
......@@ -37,9 +37,9 @@ struct dnnl_deconvolution
return {MIGRAPHX_DNNL_PREFIX(ARG_SRC), MIGRAPHX_DNNL_PREFIX(ARG_WEIGHTS)};
}
shape adjust_shape(const shape& x, int i) const
shape adjust_shape(const shape& x, int i, const shape& output) const
{
auto s = base_adjust_shape(x);
auto s = base_adjust_shape(x, output);
if(i == 1)
{
// The input and output channels are flipped for dnnl
......
......@@ -167,7 +167,7 @@ struct dnnl_op : auto_register_op<Derived>
std::iota(result.begin(), result.end(), MIGRAPHX_DNNL_PREFIX(ARG_SRC_0));
return result;
}
shape base_adjust_shape(const shape& s) const
shape base_adjust_shape(const shape& s, const shape& output) const
{
if(s.broadcasted())
{
......@@ -183,7 +183,8 @@ struct dnnl_op : auto_register_op<Derived>
else
return len;
});
return shape{s.type(), lens};
// Use the permutation of the output
return output.with_lens(s.type(), lens);
}
return s;
}
......@@ -204,7 +205,10 @@ struct dnnl_op : auto_register_op<Derived>
i++;
}
}
shape adjust_shape(const shape& s, int) const { return base_adjust_shape(s); }
shape adjust_shape(const shape& s, int, const shape& output) const
{
return base_adjust_shape(s, output);
}
std::vector<int> create_arg_map(std::size_t input_size) const
{
const auto& self = static_cast<const Derived&>(*this);
......@@ -224,12 +228,12 @@ struct dnnl_op : auto_register_op<Derived>
const auto& self = static_cast<const Derived&>(*this);
std::unordered_map<int, dnnl::memory::desc> result;
result[MIGRAPHX_DNNL_PREFIX(ARG_DST)] =
to_dnnl_memory_desc(self.adjust_shape(output_shape, inputs.size()));
to_dnnl_memory_desc(self.adjust_shape(output_shape, inputs.size(), output_shape));
auto m = create_arg_map(inputs.size());
assert(m.size() >= inputs.size());
for(int i = 0; i < inputs.size(); i++)
{
result[m[i]] = to_dnnl_memory_desc(self.adjust_shape(inputs[i], i));
result[m[i]] = to_dnnl_memory_desc(self.adjust_shape(inputs[i], i, output_shape));
}
return result;
}
......
......@@ -26,7 +26,6 @@
#include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/op/identity.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/quant_convolution.hpp>
......@@ -216,55 +215,6 @@ struct cpu_pad
};
MIGRAPHX_REGISTER_OP(cpu_pad)
struct leaky_relu_op
{
op::leaky_relu op;
std::string name() const { return "cpu::leaky_relu"; }
auto fcn() const
{
auto a = op.alpha;
return [a](auto x) { return x > 0 ? x : x * a; };
}
};
template <typename Op>
struct cpu_unary2 : auto_register_op<cpu_unary2<Op>>
{
cpu_unary2() = default;
template <class T>
cpu_unary2(T pop) : op(Op{std::move(pop)})
{
}
Op op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op.op, f);
}
std::string name() const { return op.name(); }
shape compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(1);
const auto& s = inputs.at(0);
return {s.type(), s.lens()};
}
argument compute(context&, const shape& output_shape, std::vector<argument> args) const
{
argument result{output_shape};
visit_all(result, args[0])([&](auto output, auto input) {
assert(input.get_shape().standard());
std::transform(input.begin(), input.end(), output.begin(), op.fcn());
});
return result;
}
};
template struct cpu_unary2<leaky_relu_op>;
struct cpu_rnn_var_sl_last_output
{
op::rnn_var_sl_last_output op;
......
......@@ -32,7 +32,7 @@ struct dnnl_reorder : dnnl_op<dnnl_reorder, dnnl::reorder>
{
std::string name() const { return "dnnl::reorder"; }
shape adjust_shape(const shape& x, int) const { return x; }
shape adjust_shape(const shape& x, int, const shape&) const { return x; }
shape compute_shape(const std::vector<shape>& inputs) const
{
......
......@@ -33,16 +33,15 @@
#include <migraphx/eliminate_data_type.hpp>
#include <migraphx/eliminate_identity.hpp>
#include <migraphx/eliminate_pad.hpp>
#include <migraphx/layout_nhwc.hpp>
#include <migraphx/memory_coloring.hpp>
#include <migraphx/propagate_constant.hpp>
#include <migraphx/register_target.hpp>
#include <migraphx/replace_allocate.hpp>
#include <migraphx/rewrite_batchnorm.hpp>
#include <migraphx/rewrite_pooling.hpp>
#include <migraphx/rewrite_quantization.hpp>
#include <migraphx/rewrite_rnn.hpp>
#include <migraphx/schedule.hpp>
#include <migraphx/memory_coloring.hpp>
#include <migraphx/simplify_algebra.hpp>
#include <migraphx/simplify_qdq.hpp>
#include <migraphx/simplify_reshapes.hpp>
......@@ -78,14 +77,15 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
eliminate_identity{},
eliminate_pad{},
dead_code_elimination{},
rewrite_batchnorm{},
dead_code_elimination{},
rewrite_rnn{},
dead_code_elimination{},
eliminate_common_subexpression{},
dead_code_elimination{},
simplify_algebra{},
simplify_reshapes{},
layout_nhwc{},
dead_code_elimination{},
simplify_reshapes{},
simplify_algebra{},
auto_contiguous{},
simplify_reshapes{},
......
......@@ -78,17 +78,14 @@ add_library(migraphx_gpu
allocation_model.cpp
argmax.cpp
argmin.cpp
batch_norm_inference.cpp
code_object_op.cpp
compile_ops.cpp
compile_gen.cpp
compile_hip.cpp
compile_hip_code_object.cpp
compile_miopen.cpp
compiler.cpp
convolution.cpp
deconvolution.cpp
device_name.cpp
elu.cpp
fuse_ck.cpp
fuse_mlir.cpp
fuse_ops.cpp
......@@ -102,7 +99,6 @@ add_library(migraphx_gpu
logsoftmax.cpp
loop.cpp
lrn.cpp
leaky_relu.cpp
mlir.cpp
multinomial.cpp
nonzero.cpp
......@@ -112,7 +108,6 @@ add_library(migraphx_gpu
pad.cpp
perfdb.cpp
pooling.cpp
quant_convolution.cpp
reverse.cpp
rnn_variable_seq_lens.cpp
rocblas.cpp
......@@ -147,16 +142,10 @@ register_migraphx_gpu_ops(hip_
)
register_migraphx_gpu_ops(miopen_
abs
batch_norm_inference
contiguous
convolution
deconvolution
elu
int8_conv_pack
leaky_relu
lrn
pooling
quant_convolution
)
register_op(migraphx_gpu
HEADER migraphx/gpu/rnn_variable_seq_lens.hpp
......@@ -170,6 +159,9 @@ register_op(migraphx_gpu
HEADER migraphx/gpu/gemm.hpp
OPERATORS gpu::rocblas_gemm<op::dot> gpu::rocblas_gemm<op::quant_dot>
INCLUDES migraphx/gpu/context.hpp)
register_op(migraphx_gpu HEADER migraphx/gpu/convolution.hpp
OPERATORS gpu::miopen_convolution<op::convolution> gpu::miopen_convolution<op::deconvolution> gpu::miopen_convolution<op::quant_convolution>
INCLUDES migraphx/gpu/context.hpp)
rocm_set_soversion(migraphx_gpu ${MIGRAPHX_SO_VERSION})
rocm_clang_tidy_check(migraphx_gpu)
......@@ -246,11 +238,14 @@ get_target_property(MIOPEN_LOCATION MIOpen LOCATION)
check_library_exists(MIOpen "miopenHiddenSetConvolutionFindMode" "${MIOPEN_LOCATION}" HAS_FIND_MODE_API)
check_library_exists(MIOpen "miopenFindSolutions" "${MIOPEN_LOCATION}" HAS_FIND_2_API)
if(HAS_FIND_2_API)
# TODO: Set default to HAS_FIND_2_API
set(MIGRAPHX_USE_FIND_2_API OFF CACHE BOOL "")
if(MIGRAPHX_USE_FIND_2_API)
target_compile_definitions(migraphx_gpu PUBLIC -DMIGRAPHX_HAS_FIND_2_API)
message(STATUS "MIGraphx is using Find-2.0 API of MIOpen")
else()
message(STATUS "MIOpen does not have Find-2.0 API")
message(STATUS "MIGraphx is using legacy Find API in MIOpen")
endif()
if(HAS_FIND_MODE_API)
......
......@@ -144,9 +144,8 @@ compute_global_for(context& ctx, std::size_t n, std::size_t over)
std::size_t compute_block_size(std::size_t n, std::size_t max_block_size)
{
const std::size_t min_block_size = 64;
const std::size_t base_block_size = 32;
auto block_size = (((n - 1) / base_block_size + 1)) * base_block_size;
const std::size_t min_block_size = 64;
auto block_size = (((n - 1) / min_block_size + 1)) * min_block_size;
return std::min(std::max(min_block_size, block_size), max_block_size);
}
......
......@@ -21,47 +21,81 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_DECONVOLUTION_HPP
#define MIGRAPHX_GUARD_RTGLIB_DECONVOLUTION_HPP
#include <migraphx/shape.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/compile_miopen.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/module.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
#include <migraphx/op/identity.hpp>
#include <migraphx/gpu/rocblas.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
struct miopen_deconvolution
struct miopen_op
{
op::deconvolution op;
shared<convolution_descriptor> cd;
miopenConvFwdAlgorithm_t algo{};
uint64_t solution_id = 0;
operation op = op::identity{};
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack_join(op::deconvolution::reflect(self.op, f),
pack(f(self.solution_id, "solution_id")));
return pack(f(self.op, "op"));
}
std::string name() const { return "gpu::miopen_op"; }
shape compute_shape(std::vector<shape> inputs) const
{
inputs.push_back(inputs.back());
return op.compute_shape(inputs);
}
std::string name() const { return "gpu::deconv"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
shape find(context& ctx, const shape& output_shape, std::vector<shape> inputs);
void finalize(context& ctx, const shape& output_shape, std::vector<shape> inputs);
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
};
MIGRAPHX_REGISTER_OP(miopen_op);
std::size_t compile_miopen::compile(operation& op, instruction_ref ins, bool format) const
{
op.from_value({{"int8_x4_format", format}});
auto v = op.compile(*ctx, ins->get_shape(), to_shapes(ins->inputs()));
return v.get<std::size_t>("workspace", 0);
}
void compile_miopen::apply(module& m) const
{
assert(ctx);
const bool int8_x4_format = get_int8_x4_format(any_cast<migraphx::gpu::context>(*ctx));
for(auto ins : iterator_for(m))
{
if(ins->name() != "gpu::miopen_op")
continue;
auto op = any_cast<miopen_op>(ins->get_operator()).op;
std::size_t ws = 0;
try
{
// for the regular convolution and deconvolution, this try would always succeed
ws = compile(op, ins, int8_x4_format);
}
catch(migraphx::exception&)
{
// In case no solver supports the default format, retry using the other format.
ws = compile(op, ins, not int8_x4_format);
}
auto inputs = ins->inputs();
auto alloc = m.insert_instruction(
ins, make_op("allocate", {{"shape", to_value(shape{shape::int8_type, {ws}})}}));
inputs.insert(std::prev(inputs.end()), alloc);
m.replace_instruction(ins, op, inputs);
}
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -39,19 +39,26 @@ MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_GPU_COMPILE_PARALLEL);
struct precompile_op
{
operation op = op::identity{};
operation op = op::identity{};
std::size_t additional_args = 1;
bool ignore_modules = false;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.op, "op"));
return pack(f(self.op, "op"),
f(self.additional_args, "additional_args"),
f(self.ignore_modules, "ignore_modules"));
}
std::string name() const { return "gpu::precompile_op"; }
shape compute_shape(std::vector<shape> inputs, const std::vector<module_ref>& mods) const
{
inputs.pop_back();
// Pop off additional args
inputs.resize(inputs.size() - additional_args);
if(ignore_modules)
return op.compute_shape(inputs);
return op.compute_shape(inputs, mods);
}
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/convolution.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/generate.hpp>
#include <miopen/miopen.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape miopen_convolution::compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(4).standard();
std::vector<shape> conv_inputs(inputs.begin(), inputs.begin() + 2);
check_shapes{conv_inputs, *this}.max_ndims(5);
return op.normalize_compute_shape(conv_inputs);
}
inline shape reshape_if_1d(const shape& input)
{
shape new_shape{input};
auto dims = new_shape.lens();
if(dims.size() == 3)
{
std::vector<size_t> new_dims = dims;
new_dims.insert(new_dims.begin() + 2, 1);
new_shape = shape{input.type(), new_dims};
}
return new_shape;
}
argument miopen_convolution::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
auto x_desc = make_tensor(reshape_if_1d(args[0].get_shape()));
auto w_desc = make_tensor(reshape_if_1d(args[1].get_shape()));
auto y_desc = make_tensor(reshape_if_1d(output_shape));
auto* miopen_stream_handle = ctx.get_stream().get_miopen();
auto workspace_size = args[2].get_shape().bytes();
#ifdef MIGRAPHX_HAS_FIND_2_API
{
const miopenTensorArgument_t tensor_args[3] = {
{miopenTensorConvolutionX, nullptr, args[0].implicit()},
{miopenTensorConvolutionW, nullptr, args[1].implicit()},
{miopenTensorConvolutionY, nullptr, args[3].implicit()},
};
if(solution_ptr.get() == nullptr)
MIGRAPHX_THROW("MIOpen Convolution : Load MIOpen Solution before running it");
auto status = miopenRunSolution(miopen_stream_handle,
solution_ptr.get(),
3,
tensor_args,
args[2].implicit(),
workspace_size);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Convolution: running convolution using find_2.0 failed");
return args[3];
}
#else
// else use immediate mode
if(solution_id == 0)
MIGRAPHX_THROW("MIOpen Convolution: invalid solution ID");
auto status = miopenConvolutionForwardImmediate(miopen_stream_handle,
w_desc.get(),
args[1].implicit(),
x_desc.get(),
args[0].implicit(),
cd.get(),
y_desc.get(),
args[3].implicit(),
args[2].implicit(),
workspace_size,
solution_id);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Convolution: running convolution failed");
return args[3];
#endif
}
shape miopen_convolution::find(context& ctx, const shape& output_shape, std::vector<shape> inputs)
{
shape workspace_shape{};
auto x_desc = make_tensor(reshape_if_1d(inputs[0]));
auto w_desc = make_tensor(reshape_if_1d(inputs[1]));
auto y_desc = make_tensor(reshape_if_1d(output_shape));
std::size_t workspace_size = 0;
#ifdef MIGRAPHX_HAS_FIND_2_API
{
auto conv_problem = make_obj<miopen_problem>(
&miopenCreateConvProblem, cd.get(), miopenProblemDirectionForward);
set_tensor_descriptor(miopenTensorConvolutionX, x_desc, conv_problem);
set_tensor_descriptor(miopenTensorConvolutionW, w_desc, conv_problem);
set_tensor_descriptor(miopenTensorConvolutionY, y_desc, conv_problem);
auto* miopen_stream_handle = ctx.get_stream().get_miopen();
solution_ptr = find_solution(miopen_stream_handle, conv_problem.get());
auto status = miopenGetSolutionWorkspaceSize(solution_ptr.get(), &workspace_size);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Convolution : failed to get solution's workspace size");
std::size_t solution_size;
status = miopenGetSolutionSize(solution_ptr.get(), &solution_size);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Convolution: Failed to fetch solution size");
auto solution_binary = std::vector<char>{};
solution_binary.resize(solution_size);
status = miopenSaveSolution(solution_ptr.get(), solution_binary.data());
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Convolution: Saving solution failed");
solution_object = value::binary{solution_binary.data(), solution_size};
return shape{shape::int8_type, {workspace_size}};
}
#else
// else use immediate find mode
auto status = miopenConvolutionForwardGetWorkSpaceSize(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&workspace_size);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Convolution: Failed to get forward workspace size");
workspace_shape = shape{shape::int8_type, {workspace_size}};
auto x = to_gpu(generate_argument(inputs[0]));
auto w = to_gpu(generate_argument(inputs[1]));
auto y = allocate_gpu(output_shape);
auto workspace = allocate_gpu(workspace_shape);
int algo_count = 1;
miopenConvAlgoPerf_t perf;
status = miopenFindConvolutionForwardAlgorithm(ctx.get_stream().get_miopen(),
x_desc.get(),
x.implicit(),
w_desc.get(),
w.implicit(),
cd.get(),
y_desc.get(),
y.implicit(),
1,
&algo_count,
&perf,
workspace.implicit(),
workspace_size,
false);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Convolution: find convolution failed");
algo = perf.fwd_algo;
size_t solution_count;
status = miopenConvolutionForwardGetSolutionCount(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&solution_count);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Convolution: get solution count failed");
std::vector<miopenConvSolution_t> solutions(solution_count);
status = miopenConvolutionForwardGetSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_count,
&solution_count,
solutions.data());
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Convolution: get solution failed");
solution_id = solutions.front().solution_id;
return shape{shape::int8_type, {perf.memory}};
#endif
}
void miopen_convolution::finalize(context& ctx,
const shape& output_shape,
const std::vector<shape>& inputs)
{
#ifdef MIGRAPHX_HAS_FIND_2_API
{
(void)(ctx); // avoid warnings
(void)(output_shape);
(void)(inputs);
// load solution
if(solution_ptr == nullptr)
{
miopenSolution_t ptr;
auto status = miopenLoadSolution(&ptr,
reinterpret_cast<const char*>(solution_object.data()),
solution_object.size());
solution_ptr = miopen_solution{ptr};
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Convolution: loading convolution solution failed");
}
}
#else
// Use immediate mode API
{
if(cd == nullptr)
cd = make_conv(op);
if(solution_id == 0)
{
// Check that workspace hasn't changed
auto size = inputs.at(2).bytes();
auto ws = find(ctx, output_shape, inputs);
if(ws.bytes() > size)
MIGRAPHX_THROW("MIOpen Convolution: workspace has changed during finalization.");
}
auto x_desc = make_tensor(reshape_if_1d(inputs[0]));
auto w_desc = make_tensor(reshape_if_1d(inputs[1]));
auto y_desc = make_tensor(reshape_if_1d(output_shape));
auto status = miopenConvolutionForwardCompileSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_id);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Convolution: compile solution failed");
}
#endif
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/deconvolution.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/generate.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape miopen_deconvolution::compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(4).standard();
std::vector<shape> conv_inputs(inputs.begin(), inputs.begin() + 2);
check_shapes{conv_inputs, *this}.max_ndims(5);
return op.compute_shape(conv_inputs);
}
inline shape reshape_if_1d(const shape& input)
{
shape new_shape{input};
auto dims = new_shape.lens();
if(dims.size() == 3)
{
std::vector<size_t> new_dims = dims;
new_dims.insert(new_dims.begin() + 2, 1);
new_shape = shape{input.type(), new_dims};
}
return new_shape;
}
argument miopen_deconvolution::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
auto x_desc = make_tensor(reshape_if_1d(args[0].get_shape()));
auto w_desc = make_tensor(reshape_if_1d(args[1].get_shape()));
auto y_desc = make_tensor(reshape_if_1d(output_shape));
if(solution_id == 0)
MIGRAPHX_THROW("MIOpen Deconvolution: invalid solution ID");
auto status = miopenConvolutionForwardImmediate(ctx.get_stream().get_miopen(),
w_desc.get(),
args[1].implicit(),
x_desc.get(),
args[0].implicit(),
cd.get(),
y_desc.get(),
args[3].implicit(),
args[2].implicit(),
args[2].get_shape().bytes(),
solution_id);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Deconvolution: running convolution failed");
return args[3];
}
shape miopen_deconvolution::find(context& ctx, const shape& output_shape, std::vector<shape> inputs)
{
shape workspace_shape{};
auto x_desc = make_tensor(reshape_if_1d(inputs[0]));
auto w_desc = make_tensor(reshape_if_1d(inputs[1]));
auto y_desc = make_tensor(reshape_if_1d(output_shape));
std::size_t workspace_size = 0;
miopenConvolutionForwardGetWorkSpaceSize(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&workspace_size);
workspace_shape = shape{shape::int8_type, {workspace_size}};
auto x = to_gpu(generate_argument(inputs[0]));
auto w = to_gpu(generate_argument(inputs[1]));
auto y = allocate_gpu(output_shape);
auto workspace = allocate_gpu(workspace_shape);
int algo_count = 1;
miopenConvAlgoPerf_t perf;
auto status = miopenFindConvolutionForwardAlgorithm(ctx.get_stream().get_miopen(),
x_desc.get(),
x.implicit(),
w_desc.get(),
w.implicit(),
cd.get(),
y_desc.get(),
y.implicit(),
1,
&algo_count,
&perf,
workspace.implicit(),
workspace_size,
false);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Deconvolution: find convolution failed");
algo = perf.fwd_algo;
size_t solution_count;
status = miopenConvolutionForwardGetSolutionCount(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&solution_count);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Deconvolution: get solution count failed");
std::vector<miopenConvSolution_t> solutions(solution_count);
status = miopenConvolutionForwardGetSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_count,
&solution_count,
solutions.data());
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Deconvolution: get solution failed");
solution_id = solutions.front().solution_id;
return shape{shape::int8_type, {perf.memory}};
}
void miopen_deconvolution::finalize(context& ctx,
const shape& output_shape,
std::vector<shape> inputs)
{
if(cd == nullptr)
cd = make_deconv(op);
if(solution_id == 0)
{
// Check that workspace hasn't changed
auto size = inputs.at(2).bytes();
auto ws = find(ctx, output_shape, inputs);
if(ws.bytes() > size)
MIGRAPHX_THROW("MIOpen Deconvolution: workspace has changed during finalization.");
}
auto x_desc = make_tensor(reshape_if_1d(inputs[0]));
auto w_desc = make_tensor(reshape_if_1d(inputs[1]));
auto y_desc = make_tensor(reshape_if_1d(output_shape));
auto status = miopenConvolutionForwardCompileSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_id);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Deconvolution: compile solution failed");
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/elu.hpp>
#include <migraphx/gpu/context.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape miopen_elu::compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(2).not_broadcasted();
return inputs.at(1);
}
argument miopen_elu::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
float alpha = 1;
float beta = 0;
auto x_desc = make_tensor(args[0].get_shape());
auto y_desc = make_tensor(output_shape);
miopenActivationForward(ctx.get_stream().get_miopen(),
ad.get(),
&alpha,
x_desc.get(),
args[0].implicit(),
&beta,
y_desc.get(),
args[1].implicit());
return args[1];
}
void miopen_elu::finalize(context&, const shape&, const std::vector<shape>&)
{
ad = make_elu(op.alpha);
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -49,7 +49,7 @@ struct mlir_conv
std::string name() const { return "gpu::mlir_conv"; }
shape compute_shape(std::vector<shape> inputs, const std::vector<module_ref>& mods) const
{
check_shapes{inputs, *this}.standard();
check_shapes{inputs, *this}.packed_or_broadcasted();
if(mods.size() != 1)
MIGRAPHX_THROW("should have one submodule.");
if(inputs.size() < 2)
......@@ -70,6 +70,9 @@ MIGRAPHX_PRED_MATCHER(is_mlir_conv, instruction_ref ins)
auto group = v.at("group").to<int>();
if(group != 1)
return false;
// Avoid MLIR assertion: Index < Length && "Invalid index!"
if(ins->get_shape().lens().size() != 4)
return false;
return true;
}
......@@ -96,9 +99,10 @@ struct find_conv_pointwise
i.name());
}))
return;
// Only fuse with fp32 for now
// Only fuse with fp32/fp16
if(std::any_of(ins->inputs().begin(), ins->inputs().end(), [&](auto i) {
return i->get_shape().type() != shape::type_t::float_type;
return not contains({shape::type_t::float_type, shape::type_t::half_type},
i->get_shape().type());
}))
return;
std::sort(names.begin(), names.end());
......
......@@ -26,7 +26,6 @@
#include <migraphx/gpu/fuse_ops.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/convolution.hpp>
#include <migraphx/gpu/device_name.hpp>
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/gemm.hpp>
......@@ -190,10 +189,12 @@ MIGRAPHX_PRED_MATCHER(fusable_conv, instruction_ref ins)
return false;
auto wei = ins->inputs().at(1)->get_shape();
assert(wei.lens().size() == 4);
auto conv = any_cast<miopen_convolution>(ins->get_operator());
if(conv.op.group > 1)
auto miopen_conv_op = ins->get_operator().to_value();
auto algo = miopen_conv_op.at("algo").to<miopenConvFwdAlgorithm_t>();
auto conv_op = from_value<op::convolution>(miopen_conv_op["op"]);
if(conv_op.group > 1)
return false;
if(wei.lens()[1] > 512 and conv.algo != miopenConvolutionFwdAlgoWinograd)
if(wei.lens()[1] > 512 and algo != miopenConvolutionFwdAlgoWinograd)
return false;
// Do not fuse non-symmetric input
......@@ -201,13 +202,12 @@ MIGRAPHX_PRED_MATCHER(fusable_conv, instruction_ref ins)
if(input_lens[2] != input_lens[3] or wei.lens()[2] != wei.lens()[3])
return false;
auto op = conv.op;
// Dont fuse winograd for non-3x3s since there is no fused windograd for those configs
if(conv.algo == miopenConvolutionFwdAlgoWinograd and wei.lens()[2] != 3 and
wei.lens()[3] != 3 and contains({{1, 1}}, op.stride))
if(algo == miopenConvolutionFwdAlgoWinograd and wei.lens()[2] != 3 and wei.lens()[3] != 3 and
contains({{1, 1}}, conv_op.stride))
return false;
return contains({{0, 0, 0, 0}, {1, 1, 1, 1}, {2, 2, 2, 2}}, op.padding) and
contains({{0, 0}, {1, 1}}, op.stride) and contains({{1, 1}}, op.dilation);
return contains({{0, 0, 0, 0}, {1, 1, 1, 1}, {2, 2, 2, 2}}, conv_op.padding) and
contains({{0, 0}, {1, 1}}, conv_op.stride) and contains({{1, 1}}, conv_op.dilation);
}
void move_broadcasted_back(std::vector<instruction_ref>& args)
......@@ -462,7 +462,7 @@ void apply_conv_bias(context& ctx, module& m, const match::matcher_result& r)
auto ins = r.result;
auto input_ins = conv_ins->inputs().at(0);
auto weights_ins = conv_ins->inputs().at(1);
auto conv_op = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
auto conv_op = from_value<op::convolution>((conv_ins->get_operator()).to_value()["op"]);
auto alloc_ins = ins->inputs().back();
auto old_ws_ins = conv_ins->inputs().at(2);
......@@ -528,7 +528,7 @@ struct find_conv_pointwise
auto ins = r.result;
auto input_ins = conv_ins->inputs().at(0);
auto weights_ins = conv_ins->inputs().at(1);
auto conv_op = any_cast<miopen_convolution>(conv_ins->get_operator()).op;
auto conv_op = from_value<op::convolution>(conv_ins->get_operator().to_value()["op"]);
auto alloc_ins = ins->inputs().back();
module_ref pm = ins->module_inputs().front();
......@@ -772,11 +772,9 @@ struct find_layernorm_pointwise
{
auto ins = r.result;
auto layernorm = r.instructions["layernorm"];
auto* pm = ins->module_inputs().front();
if(not layernorm->module_inputs().empty())
return;
auto* pm = ins->module_inputs().front();
auto inputs = layernorm->inputs();
inputs.pop_back();
inputs.insert(inputs.end(), ins->inputs().begin() + 1, ins->inputs().end());
......@@ -785,6 +783,37 @@ struct find_layernorm_pointwise
}
};
struct find_concat_pointwise
{
auto matcher() const
{
return precompile_name("pointwise")(
match::arg(0)(precompile_name("concat").bind("concat")));
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto concat = r.instructions["concat"];
if(not concat->module_inputs().empty())
return;
// TODO: Handle type conversions
if(ins->get_shape().type() != concat->get_shape().type())
return;
auto* pm = ins->module_inputs().front();
auto inputs = concat->inputs();
inputs.pop_back();
inputs.insert(inputs.end(), ins->inputs().begin() + 1, ins->inputs().end());
auto op = concat->get_operator();
op.from_value({{"additional_args", ins->inputs().size() - 1}, {"ignore_modules", true}});
m.replace_instruction(ins, op, inputs, {pm});
}
};
void fuse_ops::apply(module& m) const
{
match::find_matches(m, find_contiguous_pointwise{});
......@@ -793,6 +822,7 @@ void fuse_ops::apply(module& m) const
run_passes(m, {dead_code_elimination{}});
match::find_matches(m,
find_layernorm_pointwise{},
find_concat_pointwise{},
find_gemm_pointwise{},
find_contiguous_tranpose_gemm{},
find_commutative_broadcast{});
......
......@@ -21,7 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <rocblas.h>
#include <rocblas/rocblas.h>
#include <migraphx/gpu/gemm_impl.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/permutation.hpp>
......
......@@ -183,8 +183,8 @@ argument register_on_gpu(const argument& arg)
{
auto arg_shared = arg.share();
auto p = register_on_gpu(arg_shared.data(), arg_shared.get_shape().bytes());
return {arg_shared.get_shape(),
[p, a = std::move(arg_shared)]() mutable { return get_device_ptr(p.get()); }};
auto s = arg_shared.get_shape();
return {s, [p, a = std::move(arg_shared)]() mutable { return get_device_ptr(p.get()); }};
}
argument to_gpu(const argument& arg, bool host)
......
......@@ -21,41 +21,31 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_BATCHNORM_HPP
#define MIGRAPHX_GUARD_RTGLIB_BATCHNORM_HPP
#ifndef MIGRAPHX_GUARD_GPU_COMPILE_MIOPEN_HPP
#define MIGRAPHX_GUARD_GPU_COMPILE_MIOPEN_HPP
#include <migraphx/argument.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/reflect.hpp>
#include <migraphx/config.hpp>
#include <migraphx/instruction_ref.hpp>
#include <string>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct module;
struct context;
struct operation;
struct miopen_batch_norm_inference
{
op::batch_norm_inference op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
namespace gpu {
std::string name() const { return "gpu::batch_norm_inference"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
struct compile_miopen
{
context* ctx = nullptr;
std::string name() const { return "gpu::compile_miopen"; }
void apply(module& m) const;
std::size_t compile(operation& op, instruction_ref ins, bool format) const;
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#endif // MIGRAPHX_GUARD_GPU_COMPILE_MIOPEN_HPP
......@@ -25,18 +25,40 @@
#define MIGRAPHX_GUARD_RTGLIB_CONVOLUTION_HPP
#include <migraphx/shape.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/register_op.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/op/identity.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <unordered_map>
#include <migraphx/reflect.hpp>
#include <migraphx/gpu/context.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
inline shape reshape_if_1d(const shape& input)
{
shape new_shape{input};
auto dims = new_shape.lens();
if(dims.size() == 3)
{
std::vector<size_t> new_dims = dims;
new_dims.insert(new_dims.begin() + 2, 1);
new_shape = shape{input.type(), new_dims};
}
return new_shape;
}
template <class Op>
struct miopen_convolution
{
op::convolution op;
Op op;
bool int8_x4_format = false;
shared<convolution_descriptor> cd = nullptr;
miopenConvFwdAlgorithm_t algo{};
#ifdef MIGRAPHX_HAS_FIND_2_API
......@@ -48,29 +70,273 @@ struct miopen_convolution
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.op.padding, "padding"),
f(self.op.stride, "stride"),
f(self.op.dilation, "dilation"),
f(self.op.group, "group"),
f(self.op.padding_mode, "padding_mode"),
return pack(f(self.op, "op"),
#ifdef MIGRAPHX_HAS_FIND_2_API
f(self.solution_object, "solution_object"),
#endif
f(self.algo, "algo"),
f(self.int8_x4_format, "int8_x4_format"),
f(self.solution_id, "solution_id"));
}
std::string name() const { return "gpu::convolution"; }
shape compute_shape(const std::vector<shape>& inputs) const;
std::string name() const { return "gpu::" + op.name(); }
inline shape compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, op}.has(4);
std::vector<shape> conv_inputs(inputs.begin(), inputs.begin() + 2);
check_shapes{conv_inputs, *this}.max_ndims(5).packed_layouts(
{{0, 1, 2}, {0, 1, 2, 3}, {0, 2, 3, 1}, {0, 1, 2, 3, 4}});
return migraphx::compute_shape<Op>(op, conv_inputs);
}
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
shape find(context& ctx, const shape& output_shape, std::vector<shape> inputs);
void finalize(context& ctx, const shape& output_shape, const std::vector<shape>& inputs);
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const
{
auto x_desc = make_tensor(reshape_if_1d(args[0].get_shape()), int8_x4_format);
auto w_desc = make_tensor(reshape_if_1d(args[1].get_shape()), int8_x4_format);
auto y_desc = make_tensor(reshape_if_1d(output_shape));
auto* miopen_stream_handle = ctx.get_stream().get_miopen();
auto workspace_size = args[2].get_shape().bytes();
#ifdef MIGRAPHX_HAS_FIND_2_API
{
const miopenTensorArgument_t tensor_args[3] = {
{miopenTensorConvolutionX, nullptr, args[0].implicit()},
{miopenTensorConvolutionW, nullptr, args[1].implicit()},
{miopenTensorConvolutionY, nullptr, args[3].implicit()},
};
if(solution_ptr.get() == nullptr)
MIGRAPHX_THROW("MIOpen " + op.name() + " : Load MIOpen Solution before running it");
auto status = miopenRunSolution(miopen_stream_handle,
solution_ptr.get(),
3,
tensor_args,
args[2].implicit(),
workspace_size);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen " + op.name() +
" : running convolution using find_2.0 failed");
return args[3];
}
#else
// else use immediate mode
if(solution_id == 0)
MIGRAPHX_THROW("MIOpen " + op.name() + " : invalid solution ID");
auto status = miopenConvolutionForwardImmediate(miopen_stream_handle,
w_desc.get(),
args[1].implicit(),
x_desc.get(),
args[0].implicit(),
cd.get(),
y_desc.get(),
args[3].implicit(),
args[2].implicit(),
workspace_size,
solution_id);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen " + op.name() + ": running convolution failed");
return args[3];
#endif
}
void set_conv_descriptor()
{
cd = (op.name() == "deconvolution") ? make_deconv(op) : make_conv(op);
}
value compile(migraphx::context& ctx, const shape& output, const std::vector<shape>& input)
{
set_conv_descriptor();
auto ws = find(any_cast<migraphx::gpu::context>(ctx), output, input);
return {{"workspace", ws.bytes()}};
}
shape find(context& ctx, const shape& output_shape, const std::vector<shape>& inputs)
{
shape workspace_shape{};
auto x_desc = make_tensor(reshape_if_1d(inputs[0]), int8_x4_format);
auto w_desc = make_tensor(reshape_if_1d(inputs[1]), int8_x4_format);
auto y_desc = make_tensor(reshape_if_1d(output_shape));
std::size_t workspace_size = 0;
#ifdef MIGRAPHX_HAS_FIND_2_API
{
auto conv_problem = make_obj<miopen_problem>(
&miopenCreateConvProblem, cd.get(), miopenProblemDirectionForward);
set_tensor_descriptor(miopenTensorConvolutionX, x_desc, conv_problem);
set_tensor_descriptor(miopenTensorConvolutionW, w_desc, conv_problem);
set_tensor_descriptor(miopenTensorConvolutionY, y_desc, conv_problem);
auto* miopen_stream_handle = ctx.get_stream().get_miopen();
solution_ptr = find_solution(miopen_stream_handle, conv_problem.get());
auto status = miopenGetSolutionWorkspaceSize(solution_ptr.get(), &workspace_size);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen" + op.name() + " : failed to get solution's workspace size");
std::size_t solution_size;
status = miopenGetSolutionSize(solution_ptr.get(), &solution_size);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen" + op.name() + ": Failed to fetch solution size");
auto solution_binary = std::vector<char>{};
solution_binary.resize(solution_size);
status = miopenSaveSolution(solution_ptr.get(), solution_binary.data());
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen" + op.name() + ": Saving solution failed");
solution_object = value::binary{solution_binary.data(), solution_size};
return shape{shape::int8_type, {workspace_size}};
}
#else
auto status = miopenConvolutionForwardGetWorkSpaceSize(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&workspace_size);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen" + op.name() + " : Failed to get forward workspace size");
workspace_shape = shape{shape::int8_type, {workspace_size}};
auto x_shape = inputs[0];
auto w_shape = inputs[1];
if(int8_x4_format)
{
x_shape = pack_int8_shape(x_shape);
w_shape = pack_int8_shape(w_shape);
}
auto x = to_gpu(generate_argument(x_shape));
auto w = to_gpu(generate_argument(w_shape));
auto y = allocate_gpu(output_shape);
auto workspace = allocate_gpu(workspace_shape);
int algo_count = 1;
miopenConvAlgoPerf_t perf;
status = miopenFindConvolutionForwardAlgorithm(ctx.get_stream().get_miopen(),
x_desc.get(),
x.implicit(),
w_desc.get(),
w.implicit(),
cd.get(),
y_desc.get(),
y.implicit(),
1,
&algo_count,
&perf,
workspace.implicit(),
workspace_size,
false);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen " + op.name() + " : find convolution failed");
algo = perf.fwd_algo;
size_t solution_count;
status = miopenConvolutionForwardGetSolutionCount(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&solution_count);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen " + op.name() + ": get solution count failed");
std::vector<miopenConvSolution_t> solutions(solution_count);
status = miopenConvolutionForwardGetSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_count,
&solution_count,
solutions.data());
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen " + op.name() + ": get solution failed");
solution_id = solutions.front().solution_id;
return shape{shape::int8_type, {perf.memory}};
#endif
}
void finalize(context& ctx, const shape& output_shape, const std::vector<shape>& inputs)
{
#ifdef MIGRAPHX_HAS_FIND_2_API
{
(void)(ctx); // avoid warnings
(void)(output_shape);
(void)(inputs);
// load solution
if(solution_ptr == nullptr)
{
miopenSolution_t ptr;
auto status =
miopenLoadSolution(&ptr,
reinterpret_cast<const char*>(solution_object.data()),
solution_object.size());
solution_ptr = miopen_solution{ptr};
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen " + op.name() + ": loading convolution solution failed");
}
}
#else
// Use immediate mode API
{
set_conv_descriptor();
if(solution_id == 0)
{
// Check that workspace hasn't changed
auto size = inputs.at(2).bytes();
auto ws = find(ctx, output_shape, inputs);
if(ws.bytes() > size)
MIGRAPHX_THROW("MIOpen " + op.name() +
": workspace has changed during finalization.");
}
auto x_desc = make_tensor(reshape_if_1d(inputs[0]), int8_x4_format);
auto w_desc = make_tensor(reshape_if_1d(inputs[1]), int8_x4_format);
auto y_desc = make_tensor(reshape_if_1d(output_shape));
auto status = miopenConvolutionForwardCompileSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_id);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Convolution: compile solution failed");
}
#endif
}
inline std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
};
inline shape pack_int8_shape(const shape& s) const
{
if(s.type() != shape::int8_type)
{
return s;
}
auto lens = s.lens();
auto strides = s.strides();
lens[1] = (lens[1] + 3) / 4 * 4;
strides[0] = strides[1] * lens[1];
return {s.type(), lens, strides};
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment