Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
15a7d96a
Commit
15a7d96a
authored
Nov 29, 2022
by
Paul
Browse files
Merge from develop
parents
4c370d64
eb094e57
Changes
155
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
380 additions
and
59 deletions
+380
-59
src/include/migraphx/operators.hpp
src/include/migraphx/operators.hpp
+0
-1
src/include/migraphx/pad_calc.hpp
src/include/migraphx/pad_calc.hpp
+15
-11
src/include/migraphx/reflect.hpp
src/include/migraphx/reflect.hpp
+14
-4
src/include/migraphx/shape.hpp
src/include/migraphx/shape.hpp
+20
-1
src/include/migraphx/streamutils.hpp
src/include/migraphx/streamutils.hpp
+16
-0
src/instruction.cpp
src/instruction.cpp
+0
-0
src/layout_nhwc.cpp
src/layout_nhwc.cpp
+118
-0
src/load_save.cpp
src/load_save.cpp
+0
-1
src/module.cpp
src/module.cpp
+0
-1
src/onnx/conv.cpp
src/onnx/conv.cpp
+1
-1
src/onnx/parse_batchnorm.cpp
src/onnx/parse_batchnorm.cpp
+12
-11
src/onnx/parse_binary_op.cpp
src/onnx/parse_binary_op.cpp
+6
-0
src/onnx/parse_convolution.cpp
src/onnx/parse_convolution.cpp
+0
-2
src/onnx/parse_deconvolution.cpp
src/onnx/parse_deconvolution.cpp
+5
-1
src/onnx/parse_split.cpp
src/onnx/parse_split.cpp
+18
-6
src/pad_calc.cpp
src/pad_calc.cpp
+33
-8
src/pass_manager.cpp
src/pass_manager.cpp
+8
-0
src/rewrite_rnn.cpp
src/rewrite_rnn.cpp
+0
-3
src/shape.cpp
src/shape.cpp
+43
-7
src/simplify_algebra.cpp
src/simplify_algebra.cpp
+71
-1
No files found.
src/include/migraphx/operators.hpp
View file @
15a7d96a
...
...
@@ -35,7 +35,6 @@
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/atan.hpp>
#include <migraphx/op/atanh.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/binary.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/capture.hpp>
...
...
src/include/migraphx/pad_calc.hpp
View file @
15a7d96a
...
...
@@ -24,9 +24,10 @@
#ifndef MIGRAPHX_GUARD_OPERATORS_PAD_CALC_HPP
#define MIGRAPHX_GUARD_OPERATORS_PAD_CALC_HPP
#include <migraphx/config.hpp>
#include <cstdint>
#include <vector>
#include <migraphx/config.hpp>
#include <migraphx/shape.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -42,18 +43,21 @@ void calculate_padding(int64_t idx,
/*!
* Calculate the padding for auto_padding. Used for dynamic shapes
* where the padding calculation must be done at evaluation time.
* \param tensor_lens input tensor image shape
* \param k_lens weights kernel shape
* \param strides strides for the kernel
* \param dilations dilations for the kernel
* \param use_upper put odd padding on upper or lower side
* \return padding in the form of {x0_begin, x1_begin, ... x0_end , x1_end, ...}
*/
std
::
vector
<
std
::
size_t
>
calc_dyn_auto_pad
(
std
::
vector
<
std
::
size_t
>
tensor_lens
,
std
::
vector
<
std
::
size_t
>
k_lens
,
std
::
vector
<
std
::
size_t
>
strides
,
std
::
vector
<
std
::
size_t
>
dilations
,
bool
use_upper
=
true
);
std
::
vector
<
std
::
size_t
>
calc_dyn_auto_pad
(
const
std
::
vector
<
std
::
size_t
>&
input_lens
,
const
std
::
vector
<
std
::
size_t
>&
wei_lens
,
const
std
::
vector
<
std
::
size_t
>&
strides
,
const
std
::
vector
<
std
::
size_t
>&
dilations
,
bool
use_upper
);
// Used for dynamic auto padding of convolution operators since padding needs to be computed at
// evaulation time.
shape
compute_padded_shape
(
const
shape
&
input
,
const
shape
&
weights
,
const
std
::
vector
<
std
::
size_t
>&
padding
,
const
std
::
vector
<
std
::
size_t
>&
stride
,
const
std
::
vector
<
std
::
size_t
>&
dilation
);
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
...
...
src/include/migraphx/reflect.hpp
View file @
15a7d96a
...
...
@@ -56,11 +56,11 @@ auto reflect_impl(rank<0>, T&, Selector)
}
template
<
class
T
>
auto
reflectable_impl
(
rank
<
1
>
,
T
&
&
x
)
auto
reflectable_impl
(
rank
<
1
>
,
const
T
&
x
)
->
decltype
(
T
::
reflect
(
x
,
reflect_placeholder
{}),
std
::
true_type
{});
template
<
class
T
>
auto
reflectable_impl
(
rank
<
0
>
,
T
&
&
)
->
decltype
(
std
::
false_type
{});
auto
reflectable_impl
(
rank
<
0
>
,
const
T
&
)
->
decltype
(
std
::
false_type
{});
template
<
class
T
>
struct
remove_rvalue_reference
...
...
@@ -111,8 +111,18 @@ auto reflect(T& x, Selector f)
template
<
class
T
>
auto
reflect_tie
(
T
&
x
)
{
return
reflect
(
x
,
[](
auto
&&
y
,
auto
&&
...)
{
return
detail
::
wrap
<
decltype
(
y
)
>
(
y
);
})(
[](
auto
&&
...
xs
)
{
return
detail
::
auto_tuple
(
xs
.
get
()...);
});
return
reflect
(
x
,
[](
auto
&&
y
,
auto
&&
...)
{
// cppcheck-suppress UnnecessaryElseStatement
if
constexpr
(
is_reflectable
<
decltype
(
y
)
>
{})
{
auto
t
=
reflect_tie
(
y
);
return
detail
::
wrap
<
decltype
(
t
)
>
(
t
);
}
else
{
return
detail
::
wrap
<
decltype
(
y
)
>
(
y
);
}
})([](
auto
&&
...
xs
)
{
return
detail
::
auto_tuple
(
xs
.
get
()...);
});
}
template
<
class
T
,
class
F
>
...
...
src/include/migraphx/shape.hpp
View file @
15a7d96a
...
...
@@ -30,6 +30,7 @@
#include <numeric>
#include <memory>
#include <migraphx/functional.hpp>
#include <migraphx/errors.hpp>
#include <migraphx/half.hpp>
#include <migraphx/config.hpp>
...
...
@@ -89,7 +90,10 @@ struct shape
std
::
size_t
opt
=
0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
);
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
min
,
"min"
),
f
(
self
.
max
,
"max"
),
f
(
self
.
opt
,
"opt"
));
}
bool
is_fixed
()
const
;
bool
has_optimal
()
const
;
...
...
@@ -115,6 +119,12 @@ struct shape
shape
(
type_t
t
,
std
::
vector
<
dynamic_dimension
>
dims
);
// Construct a dynamic shape from three sets of lengths (of the same rank)
shape
(
type_t
t
,
std
::
vector
<
std
::
size_t
>
mins
,
std
::
vector
<
std
::
size_t
>
maxes
,
std
::
vector
<
std
::
size_t
>
opts
);
template
<
class
Range
>
shape
(
type_t
t
,
const
Range
&
l
)
:
shape
(
t
,
std
::
vector
<
std
::
size_t
>
(
l
.
begin
(),
l
.
end
()))
{
...
...
@@ -136,6 +146,12 @@ struct shape
const
std
::
vector
<
std
::
size_t
>&
lens
()
const
;
const
std
::
vector
<
std
::
size_t
>&
strides
()
const
;
/*!
* The number of dimensions in the shape.
* Same as the number of indices required to get a data value.
*/
std
::
size_t
ndim
()
const
;
/*!
* Return the number of elements in the tensor.
*/
...
...
@@ -221,6 +237,9 @@ struct shape
shape
with_type
(
type_t
t
)
const
;
// convert the shape to an equivalent dynamic shape
shape
to_dynamic
()
const
;
friend
bool
operator
==
(
const
shape
&
x
,
const
shape
&
y
);
friend
bool
operator
!=
(
const
shape
&
x
,
const
shape
&
y
);
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
shape
&
x
);
...
...
src/include/migraphx/streamutils.hpp
View file @
15a7d96a
...
...
@@ -26,7 +26,9 @@
#include <ostream>
#include <algorithm>
#include <migraphx/reflect.hpp>
#include <migraphx/rank.hpp>
#include <migraphx/requires.hpp>
#include <migraphx/config.hpp>
#include <vector>
...
...
@@ -83,6 +85,20 @@ auto stream_write_value_impl(rank<0>, std::ostream& os, const Range& r)
os
<<
"}"
;
}
template
<
class
T
,
MIGRAPHX_REQUIRES
(
is_reflectable
<
T
>{})
>
void
stream_write_value_impl
(
rank
<
0
>
,
std
::
ostream
&
os
,
const
T
&
x
)
{
char
delim
=
'{'
;
reflect_each
(
x
,
[
&
](
auto
&&
y
,
auto
name
)
{
os
<<
delim
;
os
<<
name
<<
"="
;
stream_write_value_impl
(
rank
<
2
>
{},
os
,
y
);
delim
=
','
;
});
if
(
delim
==
','
)
os
<<
"}"
;
}
}
// namespace detail
template
<
class
T
>
...
...
src/instruction.cpp
100644 → 100755
View file @
15a7d96a
File mode changed from 100644 to 100755
src/
rewrite_batchnorm
.cpp
→
src/
layout_nhwc
.cpp
View file @
15a7d96a
...
...
@@ -21,63 +21,98 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/
rewrite_batchnorm
.hpp>
#include <migraphx/
program
.hpp>
#include <migraphx/
layout_nhwc
.hpp>
#include <migraphx/
module
.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/add.hpp>
#include <migraphx/op/mul.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/permutation.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/eliminate_contiguous.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/pass_manager.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
void
rewrite_batchnorm
::
apply
(
module
&
m
)
const
template
<
class
Predicate
>
std
::
vector
<
instruction_ref
>
find_lasts
(
const
module
&
m
,
Predicate
pred
)
{
std
::
vector
<
instruction_ref
>
result
;
fix
([
&
](
auto
self
,
auto
ins
)
{
if
(
pred
(
ins
))
{
result
.
push_back
(
ins
);
return
;
}
for
(
auto
input
:
ins
->
inputs
())
self
(
input
);
})(
std
::
prev
(
m
.
end
()));
return
result
;
}
std
::
unordered_set
<
instruction_ref
>
preserve_output_layout
(
module
&
m
)
{
std
::
unordered_set
<
instruction_ref
>
result
;
std
::
vector
<
instruction_ref
>
outputs
=
find_lasts
(
m
,
[](
auto
ins
)
{
return
ins
->
name
()
==
"convolution"
and
ins
->
get_shape
().
lens
().
size
()
==
4
;
});
for
(
auto
output
:
outputs
)
{
auto
permutation
=
find_permutation
(
output
->
get_shape
());
auto
layout
=
m
.
insert_instruction
(
std
::
next
(
output
),
make_op
(
"layout"
,
{{
"permutation"
,
permutation
}}),
output
);
result
.
insert
(
m
.
replace_instruction
(
output
,
layout
));
}
return
result
;
}
void
transform_convolutions
(
module
&
m
)
{
for
(
auto
ins
:
iterator_for
(
m
))
{
if
(
ins
->
name
()
!=
"
batch_norm_inference
"
)
if
(
ins
->
name
()
!=
"
convolution
"
)
continue
;
// Get scale, bias, mean, variance from inputs
auto
gamma
=
ins
->
inputs
()[
1
]
->
eval
();
auto
bias
=
ins
->
inputs
()[
2
]
->
eval
();
auto
mean
=
ins
->
inputs
()[
3
]
->
eval
();
auto
variance
=
ins
->
inputs
()[
4
]
->
eval
();
if
(
any_of
({
gamma
,
bias
,
mean
,
variance
},
[](
auto
arg
)
{
return
arg
.
empty
();
}))
if
(
ins
->
get_shape
().
lens
().
size
()
!=
4
)
continue
;
auto
v
=
ins
->
get_operator
().
to_value
();
if
(
v
.
at
(
"group"
).
to
<
int
>
()
>
1
)
continue
;
auto
args
=
ins
->
inputs
();
std
::
transform
(
args
.
begin
(),
args
.
end
(),
args
.
begin
(),
[
&
](
const
auto
&
i
)
{
return
m
.
insert_instruction
(
ins
,
make_op
(
"layout"
,
{{
"permutation"
,
{
0
,
2
,
3
,
1
}}}),
i
);
});
auto
conv
=
m
.
insert_instruction
(
ins
,
ins
->
get_operator
(),
args
);
auto
c
=
m
.
insert_instruction
(
ins
,
make_op
(
"contiguous"
),
conv
);
m
.
replace_instruction
(
ins
,
c
);
}
}
std
::
vector
<
std
::
size_t
>
lens
=
ins
->
inputs
()[
1
]
->
get_shape
().
lens
();
shape
s
{
ins
->
get_shape
().
type
(),
lens
};
// Get epsilon
auto
bn_op
=
any_cast
<
op
::
batch_norm_inference
>
(
ins
->
get_operator
());
auto
epsilon
=
bn_op
.
epsilon
;
argument
a
{
s
};
argument
b
{
s
};
visit_all
(
gamma
,
bias
,
mean
,
variance
,
a
,
b
)(
[
&
](
auto
gamma2
,
auto
bias2
,
auto
mean2
,
auto
variance2
,
auto
a2
,
auto
b2
)
{
dfor
(
a
.
get_shape
().
elements
())(
[
&
](
std
::
size_t
c
)
{
a2
[
c
]
=
gamma2
[
c
]
/
std
::
sqrt
(
variance2
[
c
]
+
epsilon
);
});
dfor
(
b
.
get_shape
().
elements
())([
&
](
std
::
size_t
c
)
{
b2
[
c
]
=
bias2
[
c
]
-
(
gamma2
[
c
]
*
mean2
[
c
]
/
std
::
sqrt
(
variance2
[
c
]
+
epsilon
));
});
});
auto
broadcast
=
op
::
broadcast
{
1
,
ins
->
get_shape
().
lens
()};
auto
a_ins
=
m
.
add_literal
({
a
.
get_shape
(),
a
.
data
()});
auto
a_broadcast
=
m
.
insert_instruction
(
ins
,
broadcast
,
a_ins
);
auto
mul
=
m
.
insert_instruction
(
ins
,
make_op
(
"mul"
),
ins
->
inputs
().
front
(),
a_broadcast
);
auto
b_ins
=
m
.
add_literal
({
b
.
get_shape
(),
b
.
data
()});
auto
b_broadcast
=
m
.
insert_instruction
(
ins
,
broadcast
,
b_ins
);
auto
add
=
m
.
insert_instruction
(
ins
,
make_op
(
"add"
),
mul
,
b_broadcast
);
m
.
replace_instruction
(
ins
,
add
);
void
remove_layout
(
module
&
m
,
const
std
::
unordered_set
<
instruction_ref
>&
output_layouts
)
{
for
(
auto
ins
:
iterator_for
(
m
))
{
if
(
ins
->
name
()
!=
"layout"
)
continue
;
if
(
ins
->
get_shape
()
!=
ins
->
inputs
().
front
()
->
get_shape
())
continue
;
if
(
contains
(
output_layouts
,
ins
))
continue
;
m
.
replace_instruction
(
ins
,
ins
->
inputs
().
front
());
}
}
void
layout_nhwc
::
apply
(
module_pass_manager
&
mpm
)
const
{
std
::
unordered_set
<
instruction_ref
>
output_layouts
=
preserve_output_layout
(
mpm
.
get_module
());
transform_convolutions
(
mpm
.
get_module
());
mpm
.
run_pass
(
dead_code_elimination
{});
mpm
.
run_pass
(
eliminate_contiguous
{
"contiguous"
});
mpm
.
run_pass
(
dead_code_elimination
{});
remove_layout
(
mpm
.
get_module
(),
output_layouts
);
mpm
.
run_pass
(
dead_code_elimination
{});
}
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/load_save.cpp
View file @
15a7d96a
...
...
@@ -25,7 +25,6 @@
#include <migraphx/file_buffer.hpp>
#include <migraphx/json.hpp>
#include <migraphx/msgpack.hpp>
#include <migraphx/file_buffer.hpp>
#include <fstream>
namespace
migraphx
{
...
...
src/module.cpp
View file @
15a7d96a
...
...
@@ -34,7 +34,6 @@
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_target.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/json.hpp>
#include <iostream>
#include <sstream>
...
...
src/onnx/conv.cpp
View file @
15a7d96a
...
...
@@ -30,7 +30,7 @@ namespace onnx {
void
recalc_conv_attributes
(
value
&
v
,
size_t
kdims
)
{
if
(
not
(
v
[
"padding"
].
size
()
=
=
kdims
or
v
[
"padding"
].
size
()
=
=
kdims
*
2
)
)
if
(
v
[
"padding"
].
size
()
!
=
kdims
and
v
[
"padding"
].
size
()
!
=
kdims
*
2
)
{
v
[
"padding"
].
resize
(
kdims
);
std
::
fill_n
(
v
[
"padding"
].
begin
(),
kdims
,
0
);
...
...
src/onnx/parse_batchnorm.cpp
View file @
15a7d96a
...
...
@@ -44,7 +44,7 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
{
epsilon
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"epsilon"
)).
at
<
float
>
();
}
auto
x_lens
=
args
[
0
]
->
get_shape
().
lens
();
auto
x_lens
=
args
[
0
]
->
get_shape
().
max_
lens
();
auto
x_type
=
args
[
0
]
->
get_shape
().
type
();
if
(
std
::
any_of
(
args
.
cbegin
()
+
1
,
args
.
cend
(),
[](
auto
a
)
{
...
...
@@ -54,18 +54,19 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
MIGRAPHX_THROW
(
"PARSE_BATCHNORM: argument scale, bias, mean, or var rank != 1"
);
}
if
(
x_lens
.
size
()
==
1
)
auto
x_rank
=
x_lens
.
size
();
if
(
x_rank
==
1
or
x_rank
==
2
)
{
auto
rt
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
0.5
}});
auto
eps
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
epsilon
}});
auto
n
0
=
info
.
add_broadcastable_binary_op
(
"sub"
,
args
[
0
],
args
[
3
]);
auto
d0
=
info
.
add_broadcastable_binary_op
(
"add"
,
args
[
4
],
eps
);
auto
d
1
=
info
.
add_broadcastable_binary_op
(
"pow"
,
d0
,
rt
);
auto
div0
=
info
.
add_broadcastable_binary_op
(
"div"
,
n
0
,
d1
);
auto
r0
=
info
.
add_broadcastable_binary_op
(
"mul"
,
div0
,
args
[
1
]);
auto
rt
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
0.5
}});
auto
eps
=
info
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
x_type
},
{
epsilon
}});
auto
n
umer
=
info
.
add_broadcastable_binary_op
(
"sub"
,
args
[
0
],
args
[
3
]);
auto
var_eps
=
info
.
add_broadcastable_binary_op
(
"add"
,
args
[
4
],
eps
);
auto
d
enom
=
info
.
add_broadcastable_binary_op
(
"pow"
,
var_eps
,
rt
);
auto
div0
=
info
.
add_broadcastable_binary_op
(
"div"
,
n
umer
,
denom
);
auto
r0
=
info
.
add_broadcastable_binary_op
(
"mul"
,
div0
,
args
[
1
]);
return
info
.
add_broadcastable_binary_op
(
"add"
,
r0
,
args
[
2
]);
}
else
if
(
x_
lens
.
size
()
>
2
)
else
if
(
x_
rank
>
2
)
{
// unsqueeze tensors of shape (C) to broadcast correctly
std
::
vector
<
int64_t
>
unsqueeze_axes
(
x_lens
.
size
()
-
2
);
...
...
@@ -89,7 +90,7 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
}
else
{
//
num dims either 0 or 2
//
rank == 0
MIGRAPHX_THROW
(
"PARSE_BATCHNORM: rank "
+
std
::
to_string
(
x_lens
.
size
())
+
" input tensor, unhandled data format"
);
}
...
...
src/onnx/parse_binary_op.cpp
View file @
15a7d96a
...
...
@@ -57,6 +57,12 @@ struct parse_binary_op : op_parser<parse_binary_op>
parser
.
parse_value
(
info
.
attributes
.
at
(
"broadcast"
)).
at
<
uint64_t
>
();
if
(
broadcasted
!=
0
)
{
if
(
std
::
any_of
(
args
.
cbegin
(),
args
.
cend
(),
[](
auto
a
)
{
return
a
->
get_shape
().
dynamic
();
}))
{
MIGRAPHX_THROW
(
"Binary op broadcast attribute not supported for dynamic input shapes"
);
}
uint64_t
axis
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"axis"
)).
at
<
uint64_t
>
();
auto
l
=
info
.
add_instruction
(
make_op
(
"broadcast"
,
...
...
src/onnx/parse_convolution.cpp
View file @
15a7d96a
...
...
@@ -125,11 +125,9 @@ struct parse_convolution : op_parser<parse_convolution>
values
[
"padding_mode"
]
=
is_same_upper
?
to_value
(
op
::
padding_mode_t
::
same_upper
)
:
to_value
(
op
::
padding_mode_t
::
same_lower
);
values
[
"use_dynamic_same_auto_pad"
]
=
true
;
}
else
{
values
[
"padding_mode"
]
=
to_value
(
op
::
padding_mode_t
::
same
);
// kernel shape will be fixed, so max_lens() == min_len() for kernel lengths
auto
weight_lens
=
weights
->
get_shape
().
max_lens
();
std
::
vector
<
std
::
size_t
>
k_lens
(
weight_lens
.
begin
()
+
2
,
weight_lens
.
end
());
...
...
src/onnx/parse_deconvolution.cpp
View file @
15a7d96a
...
...
@@ -95,6 +95,8 @@ struct parse_deconvolution : op_parser<parse_deconvolution>
check_attr_sizes
(
kdims
,
values
[
"dilation"
].
size
(),
"PARSE_CONV_TRANSPOSE: inconsistent dilations"
);
}
// TODO: auto padding needs to be implemented for this parser and operator
if
(
contains
(
info
.
attributes
,
"auto_pad"
))
{
auto
s
=
info
.
attributes
[
"auto_pad"
].
s
();
...
...
@@ -106,7 +108,9 @@ struct parse_deconvolution : op_parser<parse_deconvolution>
if
(
s
.
find
(
"SAME"
)
!=
std
::
string
::
npos
)
{
values
[
"padding_mode"
]
=
to_value
(
op
::
padding_mode_t
::
same
);
bool
is_same_upper
=
(
s
.
find
(
"SAME_UPPER"
)
!=
std
::
string
::
npos
);
values
[
"padding_mode"
]
=
is_same_upper
?
to_value
(
op
::
padding_mode_t
::
same_upper
)
:
to_value
(
op
::
padding_mode_t
::
same_lower
);
}
}
...
...
src/onnx/parse_split.cpp
View file @
15a7d96a
...
...
@@ -26,6 +26,9 @@
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/tune_axis.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/stringutils.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -55,12 +58,12 @@ struct parse_split : op_parser<parse_split>
{
literal
s
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"split"
));
s
.
visit
([
&
](
auto
v
)
{
vec_splits
.
assign
(
v
.
begin
(),
v
.
end
());
});
if
(
std
::
accumulate
(
vec_splits
.
begin
(),
vec_splits
.
end
(),
int64_t
(
0
))
!=
static_cast
<
int64_t
>
(
lens
[
tuned_axis
]))
{
MIGRAPHX_THROW
(
"PARSE_SPLIT: sum of split attribute unequal to dim size of axis!
"
);
}
}
else
if
(
args
.
size
()
==
2
)
{
auto
s
=
args
[
1
]
->
eval
();
check_arg_empty
(
s
,
"Split: dynamic shape is not supported
"
);
s
.
visit
([
&
](
auto
v
)
{
vec_splits
.
assign
(
v
.
begin
(),
v
.
end
());
});
}
// no split attribute, input is equally divided
else
...
...
@@ -74,6 +77,15 @@ struct parse_split : op_parser<parse_split>
vec_splits
.
resize
(
info
.
num_outputs
,
dl
);
}
if
(
std
::
accumulate
(
vec_splits
.
begin
(),
vec_splits
.
end
(),
int64_t
(
0
))
!=
static_cast
<
int64_t
>
(
lens
[
tuned_axis
]))
{
MIGRAPHX_THROW
(
"PARSE_SPLIT: sum of split attribute unequal to dim size of axis! tuned axis:"
+
std
::
to_string
(
lens
[
tuned_axis
])
+
" Output "
+
to_string_range
(
vec_splits
)
+
" Rank "
+
std
::
to_string
(
n_rank
)
+
" Len outs "
+
to_string_range
(
lens
));
}
std
::
vector
<
instruction_ref
>
ret_ins
;
int64_t
start
=
0
;
for
(
auto
sl
:
vec_splits
)
...
...
src/pad_calc.cpp
View file @
15a7d96a
...
...
@@ -52,19 +52,21 @@ void calculate_padding(int64_t idx,
}
}
std
::
vector
<
std
::
size_t
>
calc_dyn_auto_pad
(
std
::
vector
<
std
::
size_t
>
tensor
_lens
,
std
::
vector
<
std
::
size_t
>
k
_lens
,
std
::
vector
<
std
::
size_t
>
strides
,
std
::
vector
<
std
::
size_t
>
dilations
,
std
::
vector
<
std
::
size_t
>
calc_dyn_auto_pad
(
const
std
::
vector
<
std
::
size_t
>
&
input
_lens
,
const
std
::
vector
<
std
::
size_t
>
&
wei
_lens
,
const
std
::
vector
<
std
::
size_t
>
&
strides
,
const
std
::
vector
<
std
::
size_t
>
&
dilations
,
bool
use_upper
)
{
std
::
vector
<
std
::
size_t
>
padding
;
padding
.
resize
(
2
*
k_lens
.
size
());
for
(
std
::
size_t
i
=
0
;
i
<
padding
.
size
()
/
2
;
i
++
)
assert
(
input_lens
.
size
()
>=
3
);
std
::
size_t
num_spatial_dims
=
input_lens
.
size
()
-
2
;
padding
.
resize
(
2
*
num_spatial_dims
);
for
(
std
::
size_t
i
=
0
;
i
<
num_spatial_dims
;
i
++
)
{
std
::
ptrdiff_t
input_dim
=
tensor
_lens
[
i
];
std
::
ptrdiff_t
input_dim
=
input
_lens
[
i
+
2
];
std
::
ptrdiff_t
stride
=
strides
[
i
];
std
::
ptrdiff_t
weight_dim
=
k
_lens
[
i
];
std
::
ptrdiff_t
weight_dim
=
wei
_lens
[
i
+
2
];
std
::
ptrdiff_t
dilation
=
dilations
[
i
];
std
::
ptrdiff_t
output_dim
=
(
input_dim
+
stride
-
1
)
/
stride
;
// round up result
std
::
ptrdiff_t
new_weight_dim
=
weight_dim
+
(
weight_dim
-
1
)
*
(
dilation
-
1
);
...
...
@@ -86,5 +88,28 @@ std::vector<std::size_t> calc_dyn_auto_pad(std::vector<std::size_t> tensor_lens,
return
padding
;
}
shape
compute_padded_shape
(
const
shape
&
input
,
const
shape
&
weights
,
const
std
::
vector
<
std
::
size_t
>&
padding
,
const
std
::
vector
<
std
::
size_t
>&
stride
,
const
std
::
vector
<
std
::
size_t
>&
dilation
)
{
const
size_t
num_spatial_dims
=
input
.
lens
().
size
()
-
2
;
std
::
vector
<
size_t
>
output_lens
{
input
.
lens
()[
0
],
weights
.
lens
()[
0
]};
// calculate the output shape of the convolution: ((W - K + 2P) / S) + 1
for
(
size_t
i
=
0
;
i
<
num_spatial_dims
;
++
i
)
{
auto
padding_factor
=
padding
[
i
]
+
padding
[
i
+
num_spatial_dims
];
output_lens
.
push_back
(
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
(
input
.
lens
()[
i
+
2
]
-
(
1
+
dilation
[
i
]
*
(
weights
.
lens
()[
i
+
2
]
-
1
))
+
padding_factor
)
/
stride
[
i
]
+
1
)));
}
return
input
.
with_lens
(
output_lens
);
}
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/pass_manager.cpp
View file @
15a7d96a
...
...
@@ -94,11 +94,19 @@ struct module_pm : module_pass_manager
virtual
void
run_pass
(
const
pass
&
p
)
override
{
assert
(
mod
);
timer
ts
{};
using
seconds
=
std
::
chrono
::
duration
<
double
>
;
trace
(
"Module: "
,
mod
->
name
(),
", Pass: "
,
p
.
name
());
const
double
t1
=
ts
.
record
<
seconds
>
();
assert
(
mod
->
validate
()
==
mod
->
end
());
p
.
apply
(
*
this
);
trace
(
*
mod
);
validate_pass
(
*
mod
,
p
,
*
t
);
const
double
t2
=
ts
.
record
<
seconds
>
();
trace
(
"Pass: "
,
p
.
name
(),
" completed in (s): "
,
(
t2
-
t1
));
}
};
...
...
src/rewrite_rnn.cpp
View file @
15a7d96a
...
...
@@ -46,9 +46,6 @@
#include <migraphx/iterator_for.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/op/rnn_var_sl_last_output.hpp>
#include <migraphx/op/rnn_variable_seq_lens.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
src/shape.cpp
View file @
15a7d96a
...
...
@@ -71,6 +71,19 @@ struct shape_impl
{
}
shape_impl
(
shape
::
type_t
t
,
std
::
vector
<
std
::
size_t
>
mins
,
std
::
vector
<
std
::
size_t
>
maxes
,
std
::
vector
<
std
::
size_t
>
opts
)
:
m_type
(
t
)
{
assert
(
mins
.
size
()
==
maxes
.
size
()
and
maxes
.
size
()
==
opts
.
size
());
for
(
size_t
i
=
0
;
i
<
mins
.
size
();
++
i
)
{
m_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
mins
[
i
],
maxes
[
i
],
opts
[
i
]});
}
}
shape_impl
(
const
std
::
vector
<
shape
>&
subs
)
:
m_type
(
shape
::
tuple_type
),
m_shapes
(
subs
)
{}
shape
::
type_t
m_type
;
...
...
@@ -224,6 +237,14 @@ shape::shape(type_t t, std::vector<shape::dynamic_dimension> dims)
{
}
shape
::
shape
(
type_t
t
,
std
::
vector
<
std
::
size_t
>
mins
,
std
::
vector
<
std
::
size_t
>
maxes
,
std
::
vector
<
std
::
size_t
>
opts
)
:
impl
(
std
::
make_shared
<
shape_impl
>
(
t
,
std
::
move
(
mins
),
std
::
move
(
maxes
),
std
::
move
(
opts
)))
{
}
shape
::
shape
(
const
std
::
vector
<
shape
>&
subs
)
:
impl
(
std
::
make_shared
<
shape_impl
>
(
subs
))
{}
shape
::
shape
(
std
::
shared_ptr
<
shape_impl
>
pimpl
)
:
impl
(
std
::
move
(
pimpl
))
{}
...
...
@@ -244,6 +265,15 @@ const std::vector<std::size_t>& shape::lens() const { return impl->m_lens; }
const
std
::
vector
<
std
::
size_t
>&
shape
::
strides
()
const
{
return
impl
->
m_strides
;
}
std
::
size_t
shape
::
ndim
()
const
{
if
(
this
->
dynamic
())
{
return
dyn_dims
().
size
();
}
return
lens
().
size
();
}
std
::
size_t
shape
::
elements
()
const
{
return
impl
->
elements
();
}
std
::
size_t
shape
::
bytes
()
const
...
...
@@ -437,6 +467,16 @@ shape shape::with_type(type_t t) const
return
{
c
};
}
shape
shape
::
to_dynamic
()
const
{
if
(
this
->
dynamic
())
{
return
*
this
;
}
std
::
vector
<
std
::
size_t
>
zeroes
(
this
->
ndim
(),
0
);
return
{
type
(),
lens
(),
lens
(),
zeroes
};
}
std
::
size_t
shape
::
element_space
()
const
{
return
impl
->
element_space
();
}
std
::
string
shape
::
type_string
()
const
{
return
name
(
this
->
type
());
}
...
...
@@ -464,15 +504,11 @@ bool shape::dynamic_dimension::is_fixed() const { return this->min == this->max;
bool
shape
::
dynamic_dimension
::
has_optimal
()
const
{
return
opt
!=
0
;
}
template
<
class
Self
,
class
F
>
auto
shape
::
dynamic_dimension
::
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
min
,
"min"
),
f
(
self
.
max
,
"max"
),
f
(
self
.
opt
,
"opt"
));
}
bool
operator
==
(
const
shape
::
dynamic_dimension
&
x
,
const
shape
::
dynamic_dimension
&
y
)
{
return
(
x
.
min
==
y
.
min
and
x
.
max
==
y
.
max
and
x
.
opt
==
y
.
opt
);
// don't check opt if both are fixed
return
(
x
.
min
==
y
.
min
and
x
.
max
==
y
.
max
and
((
x
.
is_fixed
()
and
y
.
is_fixed
())
or
(
x
.
opt
==
y
.
opt
)));
}
bool
operator
!=
(
const
shape
::
dynamic_dimension
&
x
,
const
shape
::
dynamic_dimension
&
y
)
...
...
src/simplify_algebra.cpp
View file @
15a7d96a
...
...
@@ -827,7 +827,7 @@ MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
};
auto
dots
=
std
::
count_if
(
ins
->
outputs
().
begin
(),
ins
->
outputs
().
end
(),
pred
(
"dot"
));
auto
convs
=
std
::
count_if
(
ins
->
outputs
().
begin
(),
ins
->
outputs
().
end
(),
pred
(
"convolution"
));
return
not
(
dots
<
2
and
convs
<
2
);
return
(
dots
>=
2
or
convs
>=
2
);
}
struct
find_conv_dot_horiz_fusion
...
...
@@ -933,6 +933,73 @@ struct find_div_const
}
};
struct
find_unit_ops
{
auto
matcher
()
const
{
auto
mul_1
=
match
::
name
(
"mul"
)(
match
::
either_arg
(
0
,
1
)(
match
::
has_value
(
1.0
f
),
match
::
any
().
bind
(
"x"
)));
auto
div_1
=
match
::
name
(
"div"
)(
match
::
args
(
match
::
any
().
bind
(
"x"
),
match
::
has_value
(
1.0
f
)));
auto
add_0
=
match
::
name
(
"add"
)(
match
::
either_arg
(
0
,
1
)(
match
::
has_value
(
0.0
f
,
1e-12
),
match
::
any
().
bind
(
"x"
)));
auto
sub_0
=
match
::
name
(
"sub"
)(
match
::
args
(
match
::
any
().
bind
(
"x"
),
match
::
has_value
(
0.0
f
)));
return
match
::
any_of
(
mul_1
,
div_1
,
add_0
,
sub_0
);
}
void
apply
(
module
&
m
,
const
match
::
matcher_result
&
r
)
const
{
auto
ins
=
r
.
result
;
auto
c_in
=
r
.
instructions
[
"x"
];
m
.
replace_instruction
(
ins
,
c_in
);
}
};
struct
find_neg_unit_ops
{
auto
matcher
()
const
{
auto
mul_neg_1
=
match
::
name
(
"mul"
)(
match
::
either_arg
(
0
,
1
)(
match
::
has_value
(
-
1.0
f
),
match
::
any
().
bind
(
"x"
)));
auto
div_neg_1
=
match
::
name
(
"div"
)(
match
::
args
(
match
::
any
().
bind
(
"x"
),
match
::
has_value
(
-
1.0
f
)));
auto
sub_0
=
match
::
name
(
"sub"
)(
match
::
args
(
match
::
has_value
(
0.0
f
),
match
::
any
().
bind
(
"x"
)));
return
match
::
any_of
(
mul_neg_1
,
div_neg_1
,
sub_0
);
}
void
apply
(
module
&
m
,
const
match
::
matcher_result
&
r
)
const
{
auto
ins
=
r
.
result
;
auto
c_in
=
r
.
instructions
[
"x"
];
auto
neg
=
m
.
add_instruction
(
make_op
(
"neg"
),
c_in
);
m
.
replace_instruction
(
ins
,
neg
);
}
};
struct
find_zero_ops
{
auto
matcher
()
const
{
auto
mul_zero
=
match
::
name
(
"mul"
)(
match
::
either_arg
(
0
,
1
)(
match
::
has_value
(
0.0
f
).
bind
(
"x"
),
match
::
any
()));
auto
div_zero
=
match
::
name
(
"div"
)(
match
::
args
(
match
::
has_value
(
0.0
f
).
bind
(
"x"
),
match
::
any
()));
return
match
::
any_of
(
mul_zero
,
div_zero
);
}
void
apply
(
module
&
m
,
const
match
::
matcher_result
&
r
)
const
{
auto
ins
=
r
.
result
;
auto
zero_ins
=
r
.
instructions
[
"x"
];
m
.
replace_instruction
(
ins
,
zero_ins
);
}
};
struct
find_sub_const
{
auto
matcher
()
const
...
...
@@ -1149,6 +1216,9 @@ void simplify_algebra::apply(module& m) const
find_mul_conv
{},
find_mul_slice_conv
{},
find_mul_add
{},
find_unit_ops
{},
find_neg_unit_ops
{},
find_zero_ops
{},
find_dot_add
{},
find_div_const
{},
find_sub_const
{},
...
...
Prev
1
2
3
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment