Unverified Commit 1530ec24 authored by Ted Themistokleous's avatar Ted Themistokleous Committed by GitHub
Browse files

Merge branch 'develop' into add_parity_check_ci

parents 5c98fcb0 c2e01b10
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -163,7 +163,7 @@ struct reduce_op : op_name<Derived>
auto& self = static_cast<const Derived&>(*this);
auto data_idx = out_idx;
accumulator val = self.init();
shape_for_each(batch_shape, [&](auto b_idx) {
shape_for_each(batch_shape, [&](const auto& b_idx) {
this->tune_dims(tuned_axes, b_idx, data_idx);
accumulator x = input(data_idx.begin(), data_idx.end());
val = self.op()(accumulator{self.input()(x)}, val);
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -70,13 +70,13 @@ struct reverse
argument result{s};
auto lens = s.lens();
visit_all(result, args.front())([&](auto output, auto input) {
shape_for_each(s, [&](const auto& out_idx) {
auto in_idx = out_idx;
shape_for_each(s, [&](const auto& out_idx_v, size_t out_idx) {
auto in_idx = out_idx_v;
for(const auto& axis : axes)
{
in_idx[axis] = lens[axis] - 1 - out_idx[axis];
in_idx[axis] = lens[axis] - 1 - out_idx_v[axis];
}
output[s.index(out_idx)] = input[s.index(in_idx)];
output[out_idx] = input[s.index(in_idx)];
});
});
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -113,10 +113,9 @@ struct roialign
{
std::vector<pos_weight> results(bin_grid_size[0] * bin_grid_size[1] * output_height *
output_width);
shape_for_each(comp_s, [&](auto idx) {
std::array<std::size_t, 2> p = {idx[0], idx[1]};
std::array<std::size_t, 2> i = {idx[2], idx[3]};
auto index = comp_s.index(idx);
shape_for_each(comp_s, [&](const auto& idx_v, size_t index) {
std::array<std::size_t, 2> p = {idx_v[0], idx_v[1]};
std::array<std::size_t, 2> i = {idx_v[2], idx_v[3]};
std::array<float, 2> xy{};
std::array<int64_t, 2> low{};
......@@ -255,7 +254,7 @@ struct roialign
std::vector<std::size_t> comp_lens1 = {channels, out_dims[0], out_dims[1]};
shape comp_s1{migraphx::shape::float_type, comp_lens1};
std::vector<int64_t> vec_index(channels, 0);
shape_for_each(comp_s1, [&](auto idx) {
shape_for_each(comp_s1, [&](const auto& idx) {
auto c = idx[0];
auto ph = idx[1];
auto pw = idx[2];
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......
......@@ -27,19 +27,34 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/normalize_attributes.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/**
* Slice operator that accepts variable axes, starts and ends.
*
* Attributes:
* axes: constant axes to slice over (optional)
* starts: constant slice starting indices (optional)
* ends: constant slice ending indices (optional)
*
* Parameters:
* data: the input tensor to slice (dynamic or static shape)
* input_starts: starting indicies of slice (optional, static shape)
* input_ends: ending indicies of slice (optional, static shape)
* input_axes: axes to slice over (optional, static shape)
*/
struct slice
{
std::vector<int64_t> axes;
std::vector<int64_t> starts;
std::vector<int64_t> ends;
std::vector<int64_t> axes{};
std::vector<int64_t> starts{};
std::vector<int64_t> ends{};
template <class Self, class F>
static auto reflect(Self& self, F f)
......@@ -48,8 +63,8 @@ struct slice
}
/**
* Ensure that attribute vectors axes, starts, and ends are all the same size and values are in
* limits.
* Ensure that attribute vectors axes, starts, and ends are all the same size and values are
* within limits.
*/
value attributes() const
{
......@@ -70,6 +85,90 @@ struct slice
std::string name() const { return "slice"; }
/**
* Computes the slice output shape dimensions for given starts, ends,and axes.
* Templated to also handle tensor views.
* Possibily different type between [in_starts, in_ends] and [in_axes] if in_axes is this
* object's axes attribute. Assumes in_starts and in_ends are normalized; in_axes are valid.
*/
template <class A, class B>
std::vector<std::size_t>
lens_calc(const std::vector<std::size_t>& lengths, A in_starts, A in_ends, B in_axes) const
{
auto new_lens = lengths;
for(std::size_t i = 0; i < in_axes.size(); ++i)
{
auto axis = in_axes[i];
new_lens[axis] = in_ends[i] - in_starts[i];
}
return new_lens;
}
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this, true}.has(1, 3, 4);
auto input_shape = inputs[0];
if(inputs.size() == 1)
{
auto t = input_shape.type();
if(input_shape.dynamic() and std::any_of(axes.begin(), axes.end(), [&](auto axis) {
return not input_shape.dyn_dims()[axis].is_fixed();
}))
{
MIGRAPHX_THROW("SLICE: slicing is not allowed on non-fixed dynamic input axis ");
}
if(input_shape.dynamic())
{
return shape{t,
lens_calc(input_shape.min_lens(), starts, ends, axes),
lens_calc(input_shape.max_lens(), starts, ends, axes),
{}};
}
else
{
return shape{
t, lens_calc(input_shape.lens(), starts, ends, axes), input_shape.strides()};
}
}
else
{
// check that starts, ends, and optionally input_axes are all 1D, have the same
// dimension, and are static
check_shapes{inputs.begin() + 1,
inputs.end(),
std::string("SLICE: inputs (starts, ends, and input_axes)"),
false}
.only_dims(1)
.same_dims();
auto dds = input_shape.to_dynamic().dyn_dims();
if(inputs.size() == 3)
{
if(inputs[1].lens().at(0) != axes.size())
{
MIGRAPHX_THROW("SLICE: inputs starts and ends do not have the same dimension "
"as the axes attribute");
}
std::for_each(axes.cbegin(), axes.cend(), [&](const auto& axis) {
dds.at(axis) = {0, dds.at(axis).max};
});
}
else
{
// if axes is an input, then all the output dimensions could be 0 to the max value
std::transform(dds.begin(), dds.end(), dds.begin(), [](auto dd) {
return shape::dynamic_dimension{0, dd.max};
});
}
return shape{input_shape.type(), dds};
}
}
/**
* Calculates the starting offset for the sliced tensor.
* Used in compute when only data input and all other information are in the attributes.
*
* \param s static input shape
*/
auto compute_offset(const shape& s) const
{
const std::vector<std::size_t>& lens = s.lens();
......@@ -90,80 +189,131 @@ struct slice
offset += starts[axis] * strides[axis];
}
}
return offset;
return offset * s.type_size();
}
shape normalize_compute_shape(std::vector<shape> inputs) const
/**
* Calculates the starting offset for the sliced tensor (for aliasing).
* Used when the starts and/or the axes are inputs.
*
* \param s static input shape
* \param input_starts starting indices of slice
* \param ax_vec axes to slice on
*/
template <class IndView, class Axes>
auto compute_offset(const shape& s, const IndView& input_starts, const Axes& ax_vec) const
{
check_shapes{inputs, *this, true}.has(1);
auto input_shape = inputs[0];
auto t = input_shape.type();
// TODO: When support for dynamic shapes is added to normalize_attributes,
// remove this restriction.
if(input_shape.dynamic() and std::any_of(axes.begin(), axes.end(), [&](auto axis) {
return not input_shape.dyn_dims()[axis].is_fixed();
}))
auto ret = 0;
for(std::size_t i = 0; i < ax_vec.size(); ++i)
{
MIGRAPHX_THROW("SLICE: slicing is not allowed on non-fixed dynamic input axis ");
auto axis = ax_vec[i];
ret += input_starts[i] * s.strides().at(axis);
}
return ret * s.type_size();
}
std::unordered_map<std::string, std::vector<int64_t>>
normalize_inputs(const shape& input_shape,
const std::vector<int64_t>& input_starts,
const std::vector<int64_t>& input_ends) const
{
auto attrs = this->attributes().at("normalize_axes");
return {{"input_starts",
normalize_indices(input_starts,
this->axes,
input_shape,
attrs.at("starts"),
"Slice variable input_starts")},
{"input_ends",
normalize_indices(input_ends,
this->axes,
input_shape,
attrs.at("ends"),
"Slice variable input_ends")}};
}
/**
* Three input version of the normalize_inputs.
* This one also checks that the input_axes are valid.
*/
std::unordered_map<std::string, std::vector<int64_t>>
normalize_inputs(shape input_shape,
const std::vector<int64_t>& input_starts,
const std::vector<int64_t>& input_ends,
const std::vector<int64_t>& input_axes) const
{
auto attrs = this->attributes().at("normalize_axes");
auto norm_axes =
normalize_axes(input_axes, input_shape, attrs.at("axes"), "Slice variable input_axes");
return {{"input_starts",
normalize_indices(input_starts,
norm_axes,
input_shape,
attrs.at("starts"),
"Slice variable input_starts")},
{"input_ends",
normalize_indices(input_ends,
norm_axes,
input_shape,
attrs.at("ends"),
"Slice variable input ends")},
{"input_axes", norm_axes}};
}
// For a static shape, old_lens will be adjusted to a new size
// for those axes that are sliced.
// For dynamic shape, the adjusted old_lens become the new max values,
// while updating the old mins and optimals if possible.
std::vector<std::size_t> new_mins;
std::vector<std::size_t> old_lens;
std::vector<std::size_t> old_strides;
// Doesn't handle optimals
if(input_shape.dynamic())
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
auto input = args[0];
auto input_shape = input.get_shape();
switch(args.size())
{
old_lens = input_shape.max_lens();
new_mins = input_shape.min_lens();
case 1: {
std::size_t offset = compute_offset(input_shape);
return {dyn_out.computed_shape, [=] { return input.data() + offset; }};
}
else
{
old_lens = input_shape.lens();
// For static shape (including during eval step after a dynamic input) the strides are
// indexed into the pre-slice array, so they are larger than the apparent size of the
// resulting shape.
old_strides = input_shape.strides();
case 3: {
shape calc_shape;
std::size_t offset = 0;
visit_all(args[1], args[2])([&](auto input_starts, auto input_ends) {
auto norm_inputs = normalize_inputs(input_shape,
input_starts.template to_vector<int64_t>(),
input_ends.template to_vector<int64_t>());
offset = compute_offset(input_shape, norm_inputs.at("input_starts"), this->axes);
calc_shape = {input_shape.type(),
lens_calc(input_shape.lens(),
norm_inputs.at("input_starts"),
norm_inputs.at("input_ends"),
this->axes),
input_shape.strides()};
});
return {calc_shape, [=] { return input.data() + offset; }};
}
std::vector<std::size_t> new_lens = old_lens;
for(std::size_t i = 0; i < axes.size(); i++)
{
auto axis = axes[i];
size_t sliced_length = ends[i] - starts[i];
// A Numpy indexing convention: a slice size larger than the actual dimension
// is legal and the "ends" value is clipped to the axis size
new_lens[axis] = std::min(new_lens[axis], sliced_length);
if(input_shape.dynamic())
{
// TODO: when non-fixed shape slicing is allowed, this will be different than
// sliced_length, making use of TBD start/end values.
std::size_t sliced_min_length = ends[i] - starts[i];
// if the slice size is smaller than maxes but larger than mins
new_mins[axis] = std::min(sliced_min_length, new_mins[axis]);
}
case 4: {
shape calc_shape;
std::size_t offset = 0;
visit_all(args[1], args[2], args[3])(
[&](auto input_starts, auto input_ends, auto input_axes) {
auto norm_inputs = normalize_inputs(input_shape,
input_starts.template to_vector<int64_t>(),
input_ends.template to_vector<int64_t>(),
input_axes.template to_vector<int64_t>());
offset = compute_offset(
input_shape, norm_inputs.at("input_starts"), norm_inputs.at("input_axes"));
calc_shape = shape{input_shape.type(),
lens_calc(input_shape.lens(),
norm_inputs.at("input_starts"),
norm_inputs.at("input_ends"),
norm_inputs.at("input_axes")),
input_shape.strides()};
});
return {calc_shape, [=] { return input.data() + offset; }};
}
if(input_shape.dynamic())
{
return shape{t, new_mins, new_lens, {}};
default: {
// Should never get here; covering in case some code change occurs
MIGRAPHX_THROW("SLICE: invalid number of inputs");
}
else
{
return shape{t, new_lens, old_strides};
}
}
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
auto input = args[0];
auto offset = compute_offset(input.get_shape()) * dyn_out.computed_shape.type_size();
return {dyn_out.computed_shape, [=] { return input.data() + offset; }};
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
};
......
......@@ -575,7 +575,7 @@ struct operation
{
using std::swap;
auto* derived = this->any_cast<PrivateDetailTypeErasedT>();
if(derived and private_detail_te_handle_mem_var.unique())
if(derived and private_detail_te_handle_mem_var.use_count() == 1)
{
*derived = std::forward<PrivateDetailTypeErasedT>(value);
}
......@@ -1265,7 +1265,7 @@ struct operation
private_detail_te_handle_base_type& private_detail_te_get_handle()
{
assert(private_detail_te_handle_mem_var != nullptr);
if(not private_detail_te_handle_mem_var.unique())
if(private_detail_te_handle_mem_var.use_count() > 1)
private_detail_te_handle_mem_var = private_detail_te_handle_mem_var->clone();
return *private_detail_te_handle_mem_var;
}
......
......@@ -55,6 +55,7 @@
#include <migraphx/op/equal.hpp>
#include <migraphx/op/erf.hpp>
#include <migraphx/op/exp.hpp>
#include <migraphx/op/fill.hpp>
#include <migraphx/op/flatten.hpp>
#include <migraphx/op/floor.hpp>
#include <migraphx/op/fmod.hpp>
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -62,6 +62,14 @@ shape compute_padded_shape(const shape& input,
const std::vector<std::size_t>& stride,
const std::vector<std::size_t>& dilation);
// Used for dynamic auto padding of pooling operators where padding needs to be computed at
// evaulation time.
shape compute_padded_pool_shape(const shape& input,
const shape& kernel,
const std::vector<std::size_t>& padding,
const std::vector<std::size_t>& stride,
const std::vector<std::size_t>& dilation);
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -116,7 +116,7 @@ struct pass
{
using std::swap;
auto* derived = this->any_cast<PrivateDetailTypeErasedT>();
if(derived and private_detail_te_handle_mem_var.unique())
if(derived and private_detail_te_handle_mem_var.use_count() == 1)
{
*derived = std::forward<PrivateDetailTypeErasedT>(value);
}
......@@ -292,7 +292,7 @@ struct pass
private_detail_te_handle_base_type& private_detail_te_get_handle()
{
assert(private_detail_te_handle_mem_var != nullptr);
if(not private_detail_te_handle_mem_var.unique())
if(private_detail_te_handle_mem_var.use_count() > 1)
private_detail_te_handle_mem_var = private_detail_te_handle_mem_var->clone();
return *private_detail_te_handle_mem_var;
}
......
......@@ -66,6 +66,10 @@ MIGRAPHX_EXPORT std::vector<int64_t> invert_permutation(const std::vector<int64_
MIGRAPHX_EXPORT std::vector<int64_t> find_permutation(const shape& s);
MIGRAPHX_EXPORT std::vector<int64_t> find_permutation(const std::vector<shape>& shapes);
/// Normalize the shapes so the order of dimensions will be in the order it is
/// in memory as much as possible.
MIGRAPHX_EXPORT std::vector<shape> normalize_permutation(const std::vector<shape>& shapes);
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -205,7 +205,7 @@ void transform(Range1&& r1, Range2&& r2, Iterator it, F f)
}
template <class Range>
auto reverse(Range& r)
auto reverse(Range&& r)
{
return range(std::make_reverse_iterator(r.end()), std::make_reverse_iterator(r.begin()));
}
......
......@@ -99,7 +99,7 @@ struct schedule_model
{
using std::swap;
auto* derived = this->any_cast<PrivateDetailTypeErasedT>();
if(derived and private_detail_te_handle_mem_var.unique())
if(derived and private_detail_te_handle_mem_var.use_count() == 1)
{
*derived = std::forward<PrivateDetailTypeErasedT>(value);
}
......@@ -274,7 +274,7 @@ struct schedule_model
private_detail_te_handle_base_type& private_detail_te_get_handle()
{
assert(private_detail_te_handle_mem_var != nullptr);
if(not private_detail_te_handle_mem_var.unique())
if(private_detail_te_handle_mem_var.use_count() > 1)
private_detail_te_handle_mem_var = private_detail_te_handle_mem_var->clone();
return *private_detail_te_handle_mem_var;
}
......
......@@ -263,7 +263,7 @@ struct MIGRAPHX_EXPORT shape
/// no padding
bool packed() const;
/// Returns true is the shape has been transposed. That is the strides are not in descending
/// Returns true if the shape has been transposed. That is the strides are not in descending
/// order
bool transposed() const;
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -37,11 +37,11 @@ inline namespace MIGRAPHX_INLINE_NS {
template <class F>
void shape_for_each(const migraphx::shape& s, F f)
{
// Ensure calls to f use const ref to vector
auto call = [&f](const std::vector<std::size_t>& i) { f(i); };
std::vector<std::size_t> indices(s.lens().size());
const auto& index_const_ref = indices;
shape ss{s.type(), s.lens()};
for(std::size_t i = 0; i < ss.elements(); i++)
size_t max = ss.elements();
for(std::size_t i = 0; i < max; i++)
{
std::transform(ss.strides().begin(),
ss.strides().end(),
......@@ -51,9 +51,13 @@ void shape_for_each(const migraphx::shape& s, F f)
assert(len > 0 and stride > 0);
return (i / stride) % len;
});
call(indices);
if constexpr(std::is_invocable<F, decltype(index_const_ref), decltype(i)>{})
f(index_const_ref, i);
else
f(index_const_ref);
}
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -38,6 +38,7 @@ struct module;
*/
struct MIGRAPHX_EXPORT simplify_reshapes
{
size_t depth = 4;
std::string name() const { return "simplify_reshapes"; }
void apply(module& m) const;
};
......
......@@ -100,7 +100,7 @@ struct stream_model
{
using std::swap;
auto* derived = this->any_cast<PrivateDetailTypeErasedT>();
if(derived and private_detail_te_handle_mem_var.unique())
if(derived and private_detail_te_handle_mem_var.use_count() == 1)
{
*derived = std::forward<PrivateDetailTypeErasedT>(value);
}
......@@ -288,7 +288,7 @@ struct stream_model
private_detail_te_handle_base_type& private_detail_te_get_handle()
{
assert(private_detail_te_handle_mem_var != nullptr);
if(not private_detail_te_handle_mem_var.unique())
if(private_detail_te_handle_mem_var.use_count() > 1)
private_detail_te_handle_mem_var = private_detail_te_handle_mem_var->clone();
return *private_detail_te_handle_mem_var;
}
......
......@@ -86,7 +86,7 @@ inline std::string join_strings(Strings strings, const std::string& delim)
inline std::vector<std::string> split_string(const std::string& s, char delim)
{
std::vector<std::string> elems;
std::stringstream ss(s + ' ');
std::stringstream ss(s + delim);
std::string item;
while(std::getline(ss, item, delim))
{
......@@ -149,6 +149,10 @@ interpolate_string(const std::string& input, F f, std::string start = "${", std:
result.append(it, next_start);
if(next_start == input.end())
break;
if(next_end == input.end())
{
throw std::runtime_error("Unbalanced brackets");
}
auto r = f(next_start + start.size(), next_end);
result.append(r.begin(), r.end());
it = next_end + end.size();
......
......@@ -167,7 +167,7 @@ struct target
{
using std::swap;
auto* derived = this->any_cast<PrivateDetailTypeErasedT>();
if(derived and private_detail_te_handle_mem_var.unique())
if(derived and private_detail_te_handle_mem_var.use_count() == 1)
{
*derived = std::forward<PrivateDetailTypeErasedT>(value);
}
......@@ -428,7 +428,7 @@ struct target
private_detail_te_handle_base_type& private_detail_te_get_handle()
{
assert(private_detail_te_handle_mem_var != nullptr);
if(not private_detail_te_handle_mem_var.unique())
if(private_detail_te_handle_mem_var.use_count() > 1)
private_detail_te_handle_mem_var = private_detail_te_handle_mem_var->clone();
return *private_detail_te_handle_mem_var;
}
......
......@@ -64,10 +64,7 @@ void instruction::replace(const shape& r)
result = r;
for(auto&& ins : output)
{
if(ins->name() == "@return")
continue;
assert(ins->name().front() != '@');
assert(ins->name() == "@return" or ins->name().front() != '@');
ins->recompute_shape();
}
}
......@@ -122,10 +119,6 @@ bool instruction::valid() const
{
computed = result;
}
else if(op.name() == "@return")
{
computed = {};
}
else
{
try
......@@ -145,6 +138,7 @@ bool instruction::valid() const
}
shape instruction::get_shape() const { return result; }
const literal& instruction::get_literal() const
{
assert(op.name() == "@literal");
......@@ -395,7 +389,7 @@ void instruction::print(std::ostream& os,
if(not ins->module_inputs().empty())
{
std::string delim = ", [";
for(auto&& mod_arg : ins->module_inputs())
for(const const_module_ref& mod_arg : ins->module_inputs())
{
os << delim << mod_arg->name();
delim = ", ";
......
......@@ -21,6 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/instruction.hpp>
#include <migraphx/load_save.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/json.hpp>
......@@ -60,9 +61,29 @@ void save(const program& p, const std::string& filename, const file_options& opt
{
write_buffer(filename, save_buffer(p, options));
}
// MIOpen doesn't support serializing fusion plans with Find-2.0 APIs
void print_miopen_warning(const program& p)
{
auto mods = p.get_modules();
if(std::any_of(mods.begin(), mods.end(), [](const auto* m) {
return std::any_of(m->begin(), m->end(), [](const instruction& i) {
return i.name() == "gpu::miopen_fusion";
});
}))
{
std::cout << "[WARNING]: Program has miopen_fusion instructions for which tuned solutions "
"are not stored inside serialized MIGraphX program. Consider serializing with "
"MIGRAPHX_DISABLE_MIOPEN_FUSION=1 flag set."
<< std::endl;
;
}
}
std::vector<char> save_buffer(const program& p, const file_options& options)
{
value v = p.to_value();
print_miopen_warning(p);
std::vector<char> buffer;
if(options.format == "msgpack")
{
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment