Commit 12ccb601 authored by Shucai Xiao's avatar Shucai Xiao
Browse files

code backup

parent b3c2e278
......@@ -26,7 +26,7 @@ struct capture
return pack(f(self.ins_index, "instruction_index"));
}
std::string name() const { return "capputure"; }
std::string name() const { return "capture"; }
shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
......
......@@ -17,7 +17,10 @@ void quantize(program& prog);
// insert the capture operator for the inputs of each operator to be quantized
// to int8
void capture_arguments(program& prog, const std::vector<std::string>& ins_names);
void capture_arguments(program& prog,
const std::vector<std::string>& ins_names,
std::size_t& num_quant_params,
std::function<void(std::size_t, std::vector<argument> args)> func);
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -2,7 +2,11 @@
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/mul.hpp>
#include <migraphx/op/add.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/multibroadcast.hpp>
#include <migraphx/op/capture.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/ranges.hpp>
......@@ -11,25 +15,38 @@
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
instruction_ref insert_fp16(program& prog,
instruction_ref& ins,
shape::type_t type,
std::unordered_map<instruction_ref, instruction_ref>& map_fp16)
instruction_ref insert_quant_ins(program& prog,
instruction_ref& ins,
shape::type_t type,
std::unordered_map<instruction_ref, instruction_ref>& map_ins,
float scale = 1.0f,
float shift = 0.0f)
{
if(map_fp16.count(ins) > 0)
if(map_ins.count(ins) > 0)
{
return map_fp16[ins];
return map_ins[ins];
}
if(ins->name() == "undefined")
{
return ins;
}
assert(ins->get_shape().type() == shape::float_type ||
ins->get_shape().type() == shape::double_type);
instruction_ref ins_fp16{};
ins_fp16 = prog.insert_instruction(std::next(ins), op::convert{type}, ins);
map_fp16[ins] = ins_fp16;
ins->get_shape().type() == shape::double_type ||
ins->get_shape().type() == shape::int32_type);
instruction_ref quant_ins{};
quant_ins = prog.insert_instruction(std::next(ins), op::convert{type, scale, shift}, ins);
map_ins[ins] = quant_ins;
return ins_fp16;
return quant_ins;
}
// This function is to convert any instructions specified in the input
// from double or float to float16 by inserting a convert operator.
// For the conversion, there could be cases of overflowing, but it
// is very rare in the area of deeping learning, so we just do a
// truncate of the input to get the fp16.
void quantize(program& prog, const std::vector<std::string>& ins_names)
{
std::unordered_map<instruction_ref, instruction_ref> map_fp16;
......@@ -60,7 +77,7 @@ void quantize(program& prog, const std::vector<std::string>& ins_names)
}
else
{
input_fp16 = insert_fp16(prog, input, shape::half_type, map_fp16);
input_fp16 = insert_quant_ins(prog, input, shape::half_type, map_fp16);
}
converted_inputs.push_back(input_fp16);
}
......@@ -80,21 +97,13 @@ void quantize(program& prog, const std::vector<std::string>& ins_names)
auto ins_shape = compute_shape(op, converted_inputs);
if(ins_shape.type() != orig_type)
{
// insert another convert instruction to convert it back
if(ins == std::prev(prog.end()))
// check the dead code case to avoid assert
bool output_empty = ins->outputs().empty();
auto ins_orig_type =
prog.insert_instruction(std::next(ins), op::convert{orig_type}, ins);
if(!output_empty)
{
prog.add_instruction(op::convert{orig_type}, ins);
}
else
{
// check the dead code case to avoid assert
bool output_empty = ins->outputs().empty();
auto ins_orig_type =
prog.insert_instruction(std::next(ins), op::convert{orig_type}, ins);
if(!output_empty)
{
prog.replace_instruction(ins, ins_orig_type);
}
prog.replace_instruction(ins, ins_orig_type);
}
}
......@@ -104,30 +113,16 @@ void quantize(program& prog, const std::vector<std::string>& ins_names)
void quantize(program& prog) { quantize(prog, {"all"}); }
std::vector<std::vector<argument>> ins_args;
void capture_args(std::size_t ins_index, std::vector<argument> args)
{
if(ins_index == ins_args.size())
{
ins_args.push_back(std::vector<argument>{});
}
ins_args[ins_index].push_back(args.front());
return;
}
void calc_quant_params(std::vector<std::vector<argument>>& ins_arg,
std::vector<std::pair<float, float>>& ins_params)
{
return;
}
// For the input of each input argument, we need to insert a
// capture operator to compute the scale and shift
void capture_arguments(program& prog, const std::vector<std::string>& ins_names)
void capture_arguments(program& prog,
const std::vector<std::string>& ins_names,
std::size_t& num_quant_params,
std::function<void(std::size_t, std::vector<argument> args)> func)
{
num_quant_params = 0;
// the int8 quantization only support dot and convolution
std::vector<std::string> op_names = {"dot", "convolution"};
std::vector<std::string> op_names = {"dot", "convolution", "quant_dot", "quant_convolution"};
if(!std::all_of(ins_names.begin(), ins_names.end(), [&](auto name) {
return std::find(op_names.begin(), op_names.end(), name) != op_names.end();
}))
......@@ -136,7 +131,6 @@ void capture_arguments(program& prog, const std::vector<std::string>& ins_names)
}
std::unordered_map<instruction_ref, instruction_ref> ins_map;
std::size_t index = 0;
for(auto ins : iterator_for(prog))
{
if(not contains(ins_names, ins->name()))
......@@ -156,7 +150,7 @@ void capture_arguments(program& prog, const std::vector<std::string>& ins_names)
else
{
new_ins = prog.insert_instruction(
std::next(input), op::capture{index++, capture_args}, input);
std::next(input), op::capture{num_quant_params++, func}, input);
ins_map[input] = new_ins;
}
new_args.push_back(new_ins);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment