Unverified Commit 0c98c38e authored by Ted Themistokleous's avatar Ted Themistokleous Committed by GitHub
Browse files

Merge branch 'develop' into enable_navi_32_ci

parents 1612d8f3 64b306ab
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -52,6 +52,11 @@ void calculate_padding(int64_t idx,
}
}
/**
* Given the input array dimensions; kernel (wei_lens); strides; and dilations,
* calculate the padding value in each dimension.
*
*/
std::vector<std::size_t> calc_dyn_auto_pad(const std::vector<std::size_t>& input_lens,
const std::vector<std::size_t>& wei_lens,
const std::vector<std::size_t>& strides,
......@@ -60,6 +65,7 @@ std::vector<std::size_t> calc_dyn_auto_pad(const std::vector<std::size_t>& input
{
std::vector<std::size_t> padding;
assert(input_lens.size() >= 3);
assert(input_lens.size() == wei_lens.size());
std::size_t num_spatial_dims = input_lens.size() - 2;
padding.resize(2 * num_spatial_dims);
for(std::size_t i = 0; i < num_spatial_dims; i++)
......@@ -88,6 +94,11 @@ std::vector<std::size_t> calc_dyn_auto_pad(const std::vector<std::size_t>& input
return padding;
}
/**
* Calculate the correct output shape for a convolution with
* a given input size and other parameters.
*
*/
shape compute_padded_shape(const shape& input,
const shape& weights,
const std::vector<std::size_t>& padding,
......@@ -111,5 +122,33 @@ shape compute_padded_shape(const shape& input,
return input.with_lens(output_lens);
}
/**
* Calculate the correct output shape for a pooling with
* a given input size and other parameters. This uses
* the same formula for pooling that compute_padded_shape() uses
* for convolutions, but takes slightly different inputs.
*
*/
shape compute_padded_pool_shape(const shape& input,
const shape& kernel,
const std::vector<std::size_t>& padding,
const std::vector<std::size_t>& stride,
const std::vector<std::size_t>& dilation)
{
const size_t num_spatial_dims = input.lens().size() - 2;
std::vector<size_t> output_lens{input.lens()[0], input.lens()[1]};
// calculate the output shape of the pooling: ((W - K + 2P) / S) + 1
for(size_t i = 0; i < num_spatial_dims; ++i)
{
auto padding_factor = padding[i] + padding[i + num_spatial_dims];
output_lens.push_back(std::size_t(std::max<std::ptrdiff_t>(
1,
(input.lens()[i + 2] - (1 + dilation[i] * (kernel.lens()[i] - 1)) + padding_factor) /
stride[i] +
1)));
}
return input.with_lens(output_lens);
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -50,13 +50,14 @@ struct shape_impl
{
assert(t != shape::tuple_type);
}
shape_impl(shape::type_t t, std::vector<std::size_t> l)
: m_type(t), m_lens(std::move(l)), m_standard(true)
{
assert(t != shape::tuple_type);
this->calculate_strides();
assert(m_lens.size() == m_strides.size());
}
shape_impl(shape::type_t t, std::vector<std::size_t> l, std::vector<std::size_t> s)
: m_type(t), m_lens(std::move(l)), m_strides(std::move(s))
{
......@@ -151,6 +152,22 @@ struct shape_impl
m_lens.begin(), m_lens.end(), std::size_t{1}, std::multiplies<std::size_t>());
}
std::size_t get_index(size_t i) const
{
std::size_t result = 0;
std::size_t s = 1;
for(auto k : migraphx::reverse(migraphx::range(m_lens.size())))
{
std::size_t stride = m_strides[k];
std::size_t len = m_lens[k];
std::size_t idx = (i % (s * len)) / s;
result += stride * idx;
s *= len;
}
return result;
}
std::vector<std::size_t> min_lens() const
{
std::vector<std::size_t> ret(m_dyn_dims.size());
......@@ -213,6 +230,7 @@ std::string shape::name(shape::type_t t)
}
MIGRAPHX_THROW("Invalid type");
}
std::string shape::cpp_type(shape::type_t t)
{
switch(t)
......@@ -229,10 +247,12 @@ std::string shape::cpp_type(shape::type_t t)
shape::shape() : impl(shape_impl::default_shape()) {}
shape::shape(type_t t) : impl(std::make_shared<shape_impl>(t)) {}
shape::shape(type_t t, std::vector<std::size_t> l)
: impl(std::make_shared<shape_impl>(t, std::move(l)))
{
}
shape::shape(type_t t, std::vector<std::size_t> l, std::vector<std::size_t> s)
: impl(std::make_shared<shape_impl>(t, std::move(l), std::move(s)))
{
......@@ -358,21 +378,8 @@ std::size_t shape::index(std::size_t i) const
assert(this->lens().size() == this->strides().size());
if(this->standard())
return i;
else
{
std::size_t s = 1;
std::size_t result = 0;
for(std::size_t j = 0; j < this->lens().size(); j++)
{
const std::size_t k = this->lens().size() - j - 1;
const std::size_t stride = this->strides()[k];
const std::size_t len = this->lens()[k];
const std::size_t idx = (i % (s * len)) / s;
result += stride * idx;
s *= len;
}
return result;
}
return impl->get_index(i);
}
std::vector<std::size_t> shape::multi(std::size_t idx) const
......
......@@ -1446,10 +1446,13 @@ struct find_split_transpose
{
return;
}
if(std::any_of(split_outputs.begin(), split_outputs.end(), [](auto i) {
return i->outputs().size() != 1;
}))
return;
std::vector<instruction_ref> vec_trans(split_outputs.size());
std::transform(split_outputs.begin(), split_outputs.end(), vec_trans.begin(), [](auto i) {
assert(i->outputs().size() == 1);
return i->outputs().front();
});
......
......@@ -784,7 +784,7 @@ struct find_transpose_slice
void simplify_reshapes::apply(module& m) const
{
for(int i = 0; i < 4; i++)
for(int i = 0; i < depth; i++)
{
match::find_matches(m,
find_where_op{},
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......
......@@ -123,6 +123,7 @@ add_library(migraphx_gpu
lrn.cpp
mlir.cpp
multinomial.cpp
no_device.cpp
nonzero.cpp
pack_args.cpp
pack_int8_args.cpp
......
......@@ -119,6 +119,33 @@ struct mlir_op
MIGRAPHX_REGISTER_OP(mlir_op);
namespace {
std::tuple<instruction_ref, std::vector<instruction_ref>>
fuse_input_ops_and_gemm_based_op(module_ref mm, instruction_ref gemm_based_op)
{
std::vector<instruction_ref> top_inputs;
std::vector<instruction_ref> imm_inputs;
size_t input_cnt = 0;
for(instruction_ref input : gemm_based_op->inputs())
{
std::vector<operation> op_stream;
while(contains({"slice", "transpose", "contiguous", "reshape"}, input->name()))
{
op_stream.push_back(input->get_operator());
input = input->inputs().at(0);
}
top_inputs.push_back(input);
instruction_ref prev_input =
mm->add_parameter("y" + std::to_string(input_cnt++), input->get_shape());
for(const auto& op : reverse(op_stream))
{
prev_input = mm->add_instruction(op, {prev_input});
}
imm_inputs.push_back(prev_input);
}
instruction_ref new_gemm_based_op =
mm->add_instruction(gemm_based_op->get_operator(), imm_inputs);
return {new_gemm_based_op, top_inputs};
}
MIGRAPHX_PRED_MATCHER(is_mlir_conv, instruction_ref ins)
{
......@@ -134,7 +161,7 @@ MIGRAPHX_PRED_MATCHER(is_mlir_conv, instruction_ref ins)
return true;
}
struct find_mlir_op
struct find_mlir_fused_ops
{
auto matcher() const
{
......@@ -163,34 +190,6 @@ struct find_mlir_op
return ins_map;
}
std::tuple<instruction_ref, std::vector<instruction_ref>>
fuse_input_ops_and_gemm_based_op(module_ref mm, instruction_ref gemm_based_op) const
{
std::vector<instruction_ref> top_inputs;
std::vector<instruction_ref> imm_inputs;
size_t input_cnt = 0;
for(instruction_ref input : gemm_based_op->inputs())
{
std::vector<operation> op_stream;
while(contains({"slice", "transpose", "contiguous", "reshape"}, input->name()))
{
op_stream.push_back(input->get_operator());
input = input->inputs().at(0);
}
top_inputs.push_back(input);
instruction_ref prev_input =
mm->add_parameter("y" + std::to_string(input_cnt++), input->get_shape());
for(const auto& op : reverse(op_stream))
{
prev_input = mm->add_instruction(op, {prev_input});
}
imm_inputs.push_back(prev_input);
}
instruction_ref new_gemm_based_op =
mm->add_instruction(gemm_based_op->get_operator(), imm_inputs);
return {new_gemm_based_op, top_inputs};
}
// Whitelist supported fusion options, including imposing type constraints
// for cases where MLIR only supports an operation (usually a pointwise function)
// on particular types.
......@@ -301,14 +300,95 @@ struct find_mlir_op
}
};
struct find_mlir_standalone_convolution_op
{
auto matcher() const { return match::name("convolution"); }
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto conv_based_op = r.result;
// enable only for fp32/fp16/i8 types
if(std::any_of(conv_based_op->inputs().begin(), conv_based_op->inputs().end(), [&](auto i) {
return not contains(
{shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
i->get_shape().type());
}))
return;
static size_t counter = 0;
module_ref mm = mpm.create_module("mlir_" + std::to_string(counter++));
mm->set_bypass();
auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, conv_based_op);
mm->add_return({anchor_op});
mpm.get_module().replace_instruction(
conv_based_op, mlir_op{conv_based_op->get_operator()}, top_inputs, {mm});
}
};
/**
* @brief Declares a new MIGraphX environment variable which forces to generate
* only specific MLIR operations.
*
* The variable, if defined, forces MIGraphX to use only specific operations
* with MLIR regardless of the underlying GPU architecture. The variable accepts
* a list of operations separated by comma. The variable recognizes the following
* operations: "fused", "convolution". If the variable is not defined MIGraphX
* will decide by itself which operations to delegate to MLIR. The variable is
* intended to be primarily used by rocMLIR developers.
*/
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_USE_SPECIFIC_OPS);
bool is_self_decide() { return string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "").empty(); }
bool is_requested(std::string_view option)
{
assert(not is_self_decide());
auto string_value = string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "");
const auto options = split_string(string_value, ',');
return contains(options, option);
}
bool is_fusion_enabled()
{
if(is_self_decide())
{
return true;
}
return is_requested("fused");
}
bool is_standalone_convs_enabled(context* ctx)
{
if(is_self_decide())
{
if(ctx == nullptr)
{
return false;
}
else
{
const auto& device = ctx->get_current_device();
const std::string navi_family{"gfx110"};
return starts_with(device.get_gfx_name(), navi_family);
}
}
return is_requested("convolution");
}
} // namespace
#endif
#endif // MIGRAPHX_MLIR
void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
match::find_matches(mpm, find_mlir_op{});
if(is_fusion_enabled())
{
match::find_matches(mpm, find_mlir_fused_ops{});
}
if(is_standalone_convs_enabled(this->ctx))
{
match::find_matches(mpm, find_mlir_standalone_convolution_op{});
}
#else
(void)mpm;
#endif
......
......@@ -55,7 +55,7 @@ bool is_device_ptr(const void* ptr)
auto status = hipPointerGetAttributes(&attr, ptr);
if(status != hipSuccess)
return false;
return attr.memoryType == hipMemoryTypeDevice;
return attr.type == hipMemoryTypeDevice;
}
std::size_t get_available_gpu_memory()
......
......@@ -84,8 +84,10 @@ struct miopen_convolution
{
check_shapes{inputs, op}.has(4);
std::vector<shape> conv_inputs(inputs.begin(), inputs.begin() + 2);
check_shapes{conv_inputs, *this}.max_ndims(5).packed_layouts(
{{0, 1, 2}, {0, 1, 2, 3}, {0, 2, 3, 1}, {0, 1, 2, 3, 4}});
check_shapes{conv_inputs, *this}
.max_ndims(5)
.packed_layouts({{0, 1, 2}, {0, 1, 2, 3}, {0, 2, 3, 1}, {0, 1, 2, 3, 4}})
.same_layout();
return migraphx::compute_shape<Op>(op, conv_inputs);
}
......
......@@ -22,6 +22,7 @@
* THE SOFTWARE.
*/
#include "migraphx/make_op.hpp"
#include <migraphx/stringutils.hpp>
#include <migraphx/gpu/mlir.hpp>
#ifdef MIGRAPHX_MLIR
......@@ -69,6 +70,7 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_MLIR);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_TUNE_EXHAUSTIVE);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_TUNING_DB);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_TUNING_CFG);
......@@ -93,6 +95,8 @@ struct mlir_handle
friend bool operator==(ptr x, ptr y) { return x.get_value() == y.get_value(); }
friend bool operator!=(ptr x, ptr y) { return not(x == y); }
explicit operator bool() const noexcept { return obj != ptr(); }
T obj{};
};
......@@ -645,8 +649,8 @@ struct mlir_program
void set_gpu_properties(const context& migraphx_ctx)
{
const auto& device = migraphx_ctx.get_current_device();
target_arch = device.get_device_name();
num_cu = device.get_cu_count();
target_arch = device.get_device_name();
num_cu = device.get_cu_count();
}
std::pair<std::size_t, std::size_t> get_launch_params() const
......@@ -682,8 +686,10 @@ struct mlir_program
{
tuning_config tc;
run_high_level_pipeline();
mlir_tuning_space params{
mlirRockTuningSpaceCreate(mmodule.get(), RocmlirTuningParamSetKindFull)};
auto tuning_mode = RocmlirTuningParamSetKindFull;
if(enabled(MIGRAPHX_MLIR_TUNE_EXHAUSTIVE{}))
tuning_mode = RocmlirTuningParamSetKindExhaustive;
mlir_tuning_space params{mlirRockTuningSpaceCreate(mmodule.get(), tuning_mode)};
for(auto i : range(mlirRockTuningGetNumParams(params.get())))
{
mlir_tuning_param param{mlirRockTuningParamCreate()};
......@@ -717,7 +723,8 @@ struct mlir_program
if(not tuning_cfg_path.empty())
{
std::vector<std::string> tokens = split_string(prob_config, '\t');
std::string prob = tokens[1];
std::string prob = tokens[2];
if(starts_with(prob, "conv"))
{
tuning_cfg_path += ".conv";
......@@ -727,6 +734,8 @@ struct mlir_program
tuning_cfg_path += ".gemm";
}
std::ofstream tuning_cfg(tuning_cfg_path, std::ios::app);
prob =
trim(prob, [](unsigned char c) { return (c == '\0') or (std::isspace(c) != 0); });
tuning_cfg << prob << std::endl;
}
}
......@@ -867,15 +876,22 @@ code_object_op compile_mlir(const context& migraphx_ctx,
adjust_param_shapes(m, to_shapes(inputs));
const bool trace = enabled(MIGRAPHX_TRACE_MLIR{});
static std::mutex mutex;
if(trace)
{
const std::lock_guard<std::mutex> lock(mutex);
std::cout << m << std::endl;
}
mlir_program mp;
mp.set_gpu_properties(migraphx_ctx);
mp.parse(m);
auto mod_op = mlirModuleGetOperation(mp.mmodule.get());
if(trace)
{
const std::lock_guard<std::mutex> lock(mutex);
std::cout << mlir_print(&mlirOperationPrint, mod_op) << std::endl;
}
auto co = mp.compile(solution);
co.expected_inputs = to_shapes(inputs);
co.output = m.get_output_shapes().front();
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifdef __HIP_DEVICE_COMPILE__
#error \
"Device compilation not allowed for migraphx_gpu. Do not link with hip::device. Device code should go into migraphx_device or migraphx_kernels"
#endif
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......
......@@ -177,6 +177,7 @@ add_dependencies(check test_tf)
add_subdirectory(api)
add_subdirectory(verify)
add_subdirectory(ref)
if(MIGRAPHX_ENABLE_PYTHON)
add_subdirectory(py)
......
......@@ -31,24 +31,39 @@
using migraphx::shape;
bool create_shapes(bool dynamic_allowed)
void create_shapes(bool dynamic_allowed)
{
try
{
shape a{shape::int64_type, {3}};
shape b{shape::float_type, {{3, 6}, {4, 4}}};
auto op = migraphx::make_op("add");
migraphx::check_shapes{{a, b}, op, dynamic_allowed}.has(2);
return true;
}
catch(...)
{
return false;
}
shape a{shape::int64_type, {3}};
shape b{shape::float_type, {{3, 6}, {4, 4}}};
migraphx::check_shapes{{a, b}, "", dynamic_allowed}.has(2);
}
TEST_CASE(allow_dynamic_shape) { EXPECT(create_shapes(true)); }
TEST_CASE(allow_dynamic_shape)
{
EXPECT(not test::throws([] { create_shapes(true); }));
}
TEST_CASE(fail_dynamic_shape)
{
EXPECT(test::throws([] { create_shapes(false); }));
}
TEST_CASE(fail_dynamic_shape) { EXPECT(not create_shapes(false)); }
TEST_CASE(same_layout_fail)
{
EXPECT(test::throws([] {
shape a{shape::float_type, {2, 3}};
shape b{shape::float_type, {2, 3}, {1, 2}};
migraphx::check_shapes{{a, b}, ""}.same_layout();
}));
}
TEST_CASE(same_layout_pass)
{
EXPECT(not test::throws([] {
shape a{shape::float_type, {2, 3}, {1, 2}};
shape b{shape::float_type, {2, 3}, {1, 2}};
migraphx::check_shapes{{a, b}, ""}.same_layout();
}));
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/common_dims.hpp>
#include <test.hpp>
using axes_map = std::vector<std::vector<std::size_t>>;
TEST_CASE(common_d1_less)
{
auto cd = migraphx::common_dims::compute({2, 32, 40, 8}, {2, 1280, 8});
EXPECT(cd.dims == std::vector<std::size_t>{2, 32, 40, 8});
EXPECT(cd.axes_map1 == axes_map{{0}, {1}, {2}, {3}});
EXPECT(cd.axes_map2 == axes_map{{0}, {1, 2}, {3}});
}
TEST_CASE(common1)
{
auto cd = migraphx::common_dims::compute({2, 32, 2560}, {2, 1280, 8, 8});
EXPECT(cd.dims == std::vector<std::size_t>{2, 32, 40, 8, 8});
EXPECT(cd.axes_map1 == axes_map{{0}, {1}, {2, 3, 4}});
EXPECT(cd.axes_map2 == axes_map{{0}, {1, 2}, {3}, {4}});
}
TEST_CASE(common2)
{
auto cd = migraphx::common_dims::compute({2, 1280, 8, 8}, {2, 32, 2560});
EXPECT(cd.dims == std::vector<std::size_t>{2, 32, 40, 8, 8});
EXPECT(cd.axes_map1 == axes_map{{0}, {1, 2}, {3}, {4}});
EXPECT(cd.axes_map2 == axes_map{{0}, {1}, {2, 3, 4}});
}
TEST_CASE(common_error1)
{
auto cd = migraphx::common_dims::compute({6, 35}, {3, 7, 2, 5});
EXPECT(cd.dims.empty());
}
TEST_CASE(common_error2)
{
auto cd = migraphx::common_dims::compute({3, 7, 2, 5}, {6, 35});
EXPECT(cd.dims.empty());
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
......@@ -196,15 +196,47 @@ TEST_CASE(contiguous_pointwise)
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {2, 3, 8, 8}}}), y);
auto yc = mm->add_instruction(migraphx::make_op("contiguous"), yb);
auto add = add_pointwise(p, "main:pointwise0", {x, yc}, single_pointwise("add"));
mm->add_instruction(pass_op{}, add);
auto cadd = mm->add_instruction(migraphx::make_op("contiguous"), add);
mm->add_instruction(pass_op{}, cadd);
}
auto count = std::distance(mm->begin(), mm->end());
run_pass(*mm);
EXPECT(std::distance(mm->begin(), mm->end()) == (count - 1));
EXPECT(std::distance(mm->begin(), mm->end()) == (count - 2));
EXPECT(std::none_of(
mm->begin(), mm->end(), [](auto&& ins) { return ins.name() == "contiguous"; }));
}
TEST_CASE(contiguous_nhwc_pointwise)
{
auto s =
migraphx::shape::from_permutation(migraphx::shape::float_type, {2, 3, 8, 8}, {0, 2, 3, 1});
migraphx::program p1;
{
auto* mm = p1.get_main_module();
auto x = mm->add_parameter("x", s);
auto y = mm->add_parameter("y", migraphx::shape{migraphx::shape::float_type, {3}});
auto yb = mm->add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {2, 3, 8, 8}}}), y);
auto yc = mm->add_instruction(migraphx::make_op("contiguous"), yb);
auto add = add_pointwise(p1, "main:pointwise0", {x, yc}, single_pointwise("add"));
auto cadd = mm->add_instruction(migraphx::make_op("contiguous"), add);
mm->add_instruction(pass_op{}, cadd);
}
run_pass(*p1.get_main_module());
migraphx::program p2;
{
auto* mm = p2.get_main_module();
auto x = mm->add_parameter("x", s);
auto y = mm->add_parameter("y", migraphx::shape{migraphx::shape::float_type, {3}});
auto yb = mm->add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", {2, 3, 8, 8}}}), y);
auto add = add_pointwise(p2, "main:pointwise0", {x, yb}, single_pointwise("add"));
auto cadd = mm->add_instruction(migraphx::make_op("contiguous"), add);
mm->add_instruction(pass_op{}, cadd);
}
EXPECT(p1 == p2);
}
TEST_CASE(slice_contiguous)
{
migraphx::module m;
......
......@@ -27,7 +27,7 @@
#include <migraphx/pass_manager.hpp>
#include <migraphx/instruction.hpp>
#include <basic_ops.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/make_op.hpp>
#include <test.hpp>
......@@ -58,9 +58,8 @@ create_conv(migraphx::instruction_ref& l_img,
migraphx::shape s_weights{migraphx::shape::int32_type, {4, channels, 3, 3}};
std::vector<int32_t> weights(4 * channels * 3 * 3);
auto l_weights = m.add_literal(migraphx::literal{s_weights, weights});
migraphx::op::convolution op;
op.padding_mode = padding_mode;
return m.add_instruction(op, l_img, l_weights);
return m.add_instruction(
migraphx::make_op("convolution", {{"padding_mode", padding_mode}}), l_img, l_weights);
}
TEST_CASE(rewrite_pad)
......
......@@ -112,7 +112,10 @@ TEST_CASE_REGISTER(test_limits<double, int>);
TEST_CASE_REGISTER(test_limits<double, migraphx::half>);
TEST_CASE_REGISTER(test_limits<float, int>);
TEST_CASE_REGISTER(test_limits<int, migraphx::half>);
#ifndef _WIN32
// On Windows, types int and long have the same min and max values.
TEST_CASE_REGISTER(test_limits<long, int>);
#endif
TEST_CASE_REGISTER(test_limits<long, char>);
int main(int argc, const char* argv[]) { test::run(argc, argv); }
......@@ -21,8 +21,9 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/fuse_pointwise.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_contiguous.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/program.hpp>
......@@ -361,4 +362,154 @@ TEST_CASE(no_input)
EXPECT(p == p2);
}
TEST_CASE(add_reshape_add)
{
migraphx::shape s1{migraphx::shape::float_type, {3, 10, 16}};
migraphx::shape s2{migraphx::shape::float_type, {3, 40, 2, 2}};
migraphx::shape s3{migraphx::shape::float_type, {3, 10, 4, 2, 2}};
migraphx::program p1;
{
auto* mm = p1.get_main_module();
auto x = mm->add_parameter("x", s1);
auto y = mm->add_parameter("y", s1);
auto z = mm->add_parameter("z", s2);
auto add1 = mm->add_instruction(migraphx::make_op("add"), x, y);
auto reshape =
mm->add_instruction(migraphx::make_op("reshape", {{"dims", s2.lens()}}), add1);
auto add2 = mm->add_instruction(migraphx::make_op("add"), reshape, z);
mm->add_return({add2});
}
run_pass(p1);
migraphx::program p2;
{
auto* mm = p2.get_main_module();
auto x = mm->add_parameter("x", s1);
auto y = mm->add_parameter("y", s1);
auto z = mm->add_parameter("z", s2);
auto x2 = mm->add_instruction(migraphx::make_op("reshape", {{"dims", s3.lens()}}), x);
auto y2 = mm->add_instruction(migraphx::make_op("reshape", {{"dims", s3.lens()}}), y);
auto z2 = mm->add_instruction(migraphx::make_op("reshape", {{"dims", s3.lens()}}), z);
auto fadd =
add_pointwise(p2, "main:pointwise0", {x2, y2, z2}, [=](auto* pm, const auto& inputs) {
auto add1 = pm->add_instruction(migraphx::make_op("add"), inputs[0], inputs[1]);
return pm->add_instruction(migraphx::make_op("add"), add1, inputs[2]);
});
auto reshape =
mm->add_instruction(migraphx::make_op("reshape", {{"dims", s2.lens()}}), fadd);
mm->add_return({reshape});
}
EXPECT(p1.sort() == p2.sort());
}
TEST_CASE(add_reshape_add_nonstandard)
{
migraphx::shape s1 =
migraphx::shape::from_permutation(migraphx::shape::float_type, {3, 10, 16}, {2, 0, 1});
migraphx::shape s2{migraphx::shape::float_type, {3, 40, 2, 2}};
migraphx::shape s3{migraphx::shape::float_type, {3, 10, 4, 2, 2}};
migraphx::program p1;
{
auto* mm = p1.get_main_module();
auto x = mm->add_parameter("x", s1);
auto y = mm->add_parameter("y", s1);
auto z = mm->add_parameter("z", s2);
auto add1 = mm->add_instruction(migraphx::make_op("add"), x, y);
auto c = mm->add_instruction(migraphx::make_op("contiguous"), add1);
auto reshape = mm->add_instruction(migraphx::make_op("reshape", {{"dims", s2.lens()}}), c);
auto add2 = mm->add_instruction(migraphx::make_op("add"), reshape, z);
mm->add_return({add2});
}
run_pass(p1);
migraphx::program p2;
{
auto* mm = p2.get_main_module();
auto x = mm->add_parameter("x", s1);
auto y = mm->add_parameter("y", s1);
auto z = mm->add_parameter("z", s2);
auto cx = mm->add_instruction(migraphx::make_op("contiguous"), x);
auto cy = mm->add_instruction(migraphx::make_op("contiguous"), y);
auto x2 = mm->add_instruction(migraphx::make_op("reshape", {{"dims", s3.lens()}}), cx);
auto y2 = mm->add_instruction(migraphx::make_op("reshape", {{"dims", s3.lens()}}), cy);
auto z2 = mm->add_instruction(migraphx::make_op("reshape", {{"dims", s3.lens()}}), z);
auto fadd =
add_pointwise(p2, "main:pointwise0", {x2, y2, z2}, [=](auto* pm, const auto& inputs) {
auto add1 = pm->add_instruction(migraphx::make_op("add"), inputs[0], inputs[1]);
return pm->add_instruction(migraphx::make_op("add"), add1, inputs[2]);
});
auto reshape =
mm->add_instruction(migraphx::make_op("reshape", {{"dims", s2.lens()}}), fadd);
mm->add_return({reshape});
}
EXPECT(p1.sort() == p2.sort());
}
TEST_CASE(add_unsqueeze_add_nonstandard)
{
migraphx::shape s1 =
migraphx::shape::from_permutation(migraphx::shape::float_type, {3, 10, 16}, {2, 0, 1});
migraphx::shape s2{migraphx::shape::float_type, {3, 10, 1, 16}};
migraphx::program p1;
{
auto* mm = p1.get_main_module();
auto x = mm->add_parameter("x", s1);
auto y = mm->add_parameter("y", s1);
auto z = mm->add_parameter("z", s2);
auto add1 = mm->add_instruction(migraphx::make_op("add"), x, y);
auto unsqueeze = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {2}}}), add1);
auto add2 = mm->add_instruction(migraphx::make_op("add"), unsqueeze, z);
mm->add_return({add2});
}
run_pass(p1);
migraphx::program p2;
{
auto* mm = p2.get_main_module();
auto x = mm->add_parameter("x", s1);
auto y = mm->add_parameter("y", s1);
auto z = mm->add_parameter("z", s2);
auto cx = mm->add_instruction(migraphx::make_op("contiguous"), x);
auto cy = mm->add_instruction(migraphx::make_op("contiguous"), y);
auto x2 = mm->add_instruction(migraphx::make_op("reshape", {{"dims", s2.lens()}}), cx);
auto y2 = mm->add_instruction(migraphx::make_op("reshape", {{"dims", s2.lens()}}), cy);
auto fadd =
add_pointwise(p2, "main:pointwise0", {x2, y2, z}, [=](auto* pm, const auto& inputs) {
auto add1 = pm->add_instruction(migraphx::make_op("add"), inputs[0], inputs[1]);
return pm->add_instruction(migraphx::make_op("add"), add1, inputs[2]);
});
mm->add_return({fadd});
}
EXPECT(p1.sort() == p2.sort());
}
TEST_CASE(add_reshape_add_error)
{
migraphx::shape s1{migraphx::shape::float_type, {6, 35}};
migraphx::shape s2{migraphx::shape::float_type, {3, 7, 2, 5}};
migraphx::program p1;
{
auto* mm = p1.get_main_module();
auto x = mm->add_parameter("x", s1);
auto y = mm->add_parameter("y", s1);
auto z = mm->add_parameter("z", s2);
auto add1 = mm->add_instruction(migraphx::make_op("add"), x, y);
auto reshape =
mm->add_instruction(migraphx::make_op("reshape", {{"dims", s2.lens()}}), add1);
auto add2 = mm->add_instruction(migraphx::make_op("add"), reshape, z);
mm->add_return({add2});
}
run_pass(p1);
migraphx::program p2;
{
auto* mm = p2.get_main_module();
auto x = mm->add_parameter("x", s1);
auto y = mm->add_parameter("y", s1);
auto z = mm->add_parameter("z", s2);
auto fadd1 = add_pointwise(p2, "main:pointwise0", {x, y}, single_pointwise("add"));
auto reshape =
mm->add_instruction(migraphx::make_op("reshape", {{"dims", s2.lens()}}), fadd1);
auto fadd2 = add_pointwise(p2, "main:pointwise1", {reshape, z}, single_pointwise("add"));
mm->add_return({fadd2});
}
EXPECT(p1.sort() == p2.sort());
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
......@@ -24,7 +24,7 @@
#include <iostream>
#include <vector>
#include <migraphx/gpu/fuse_mlir.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/quantization.hpp>
#include <migraphx/generate.hpp>
......@@ -90,7 +90,7 @@ TEST_CASE(int8_quantization)
migraphx::shape sc{migraphx::shape::float_type, {5, 8}};
auto pa = mm->add_parameter("a", sa);
auto pb = mm->add_parameter("b", sb);
mm->add_instruction(migraphx::op::dot{}, pa, pb);
mm->add_instruction(migraphx::make_op("dot"), pa, pb);
return p;
};
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment