Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
0c98c38e
Unverified
Commit
0c98c38e
authored
Sep 12, 2023
by
Ted Themistokleous
Committed by
GitHub
Sep 12, 2023
Browse files
Merge branch 'develop' into enable_navi_32_ci
parents
1612d8f3
64b306ab
Changes
190
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
552 additions
and
239 deletions
+552
-239
src/include/migraphx/op/gather.hpp
src/include/migraphx/op/gather.hpp
+7
-8
src/include/migraphx/op/nonmaxsuppression.hpp
src/include/migraphx/op/nonmaxsuppression.hpp
+2
-2
src/include/migraphx/op/nonzero.hpp
src/include/migraphx/op/nonzero.hpp
+4
-4
src/include/migraphx/op/pooling.hpp
src/include/migraphx/op/pooling.hpp
+103
-23
src/include/migraphx/op/reduce_op.hpp
src/include/migraphx/op/reduce_op.hpp
+2
-2
src/include/migraphx/op/reverse.hpp
src/include/migraphx/op/reverse.hpp
+5
-5
src/include/migraphx/op/roialign.hpp
src/include/migraphx/op/roialign.hpp
+5
-6
src/include/migraphx/op/scatter.hpp
src/include/migraphx/op/scatter.hpp
+1
-1
src/include/migraphx/op/slice.hpp
src/include/migraphx/op/slice.hpp
+216
-66
src/include/migraphx/pad_calc.hpp
src/include/migraphx/pad_calc.hpp
+9
-1
src/include/migraphx/ranges.hpp
src/include/migraphx/ranges.hpp
+1
-1
src/include/migraphx/shape.hpp
src/include/migraphx/shape.hpp
+1
-1
src/include/migraphx/shape_for_each.hpp
src/include/migraphx/shape_for_each.hpp
+9
-5
src/include/migraphx/simplify_reshapes.hpp
src/include/migraphx/simplify_reshapes.hpp
+1
-0
src/include/migraphx/stringutils.hpp
src/include/migraphx/stringutils.hpp
+5
-1
src/memory_coloring.cpp
src/memory_coloring.cpp
+5
-3
src/normalize_attributes.cpp
src/normalize_attributes.cpp
+42
-14
src/onnx/parse_pooling.cpp
src/onnx/parse_pooling.cpp
+33
-22
src/onnx/parse_resize.cpp
src/onnx/parse_resize.cpp
+19
-25
src/onnx/parse_slice.cpp
src/onnx/parse_slice.cpp
+82
-49
No files found.
src/include/migraphx/op/gather.hpp
View file @
0c98c38e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -125,13 +125,12 @@ struct gather
auto
out_lens
=
data
.
get_shape
().
lens
();
out_lens
[
axis
]
=
indices
.
get_shape
().
elements
();
migraphx
::
shape
out_comp_shape
{
data
.
get_shape
().
type
(),
out_lens
};
shape_for_each
(
out_comp_shape
,
[
&
](
const
auto
&
out_idx
)
{
auto
data_idx
=
out_idx
;
auto
in_index
=
indices
[
data_idx
[
axis
]];
in_index
=
(
in_index
<
0
)
?
in_index
+
axis_dim_size
:
in_index
;
data_idx
[
axis
]
=
in_index
;
output
[
out_comp_shape
.
index
(
out_idx
.
begin
(),
out_idx
.
end
())]
=
data
(
data_idx
.
begin
(),
data_idx
.
end
());
shape_for_each
(
out_comp_shape
,
[
&
](
const
auto
&
out_idx_v
,
size_t
out_idx
)
{
auto
data_idx
=
out_idx_v
;
auto
in_index
=
indices
[
data_idx
[
axis
]];
in_index
=
(
in_index
<
0
)
?
in_index
+
axis_dim_size
:
in_index
;
data_idx
[
axis
]
=
in_index
;
output
[
out_idx
]
=
data
(
data_idx
.
begin
(),
data_idx
.
end
());
});
}
});
...
...
src/include/migraphx/op/nonmaxsuppression.hpp
View file @
0c98c38e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -258,7 +258,7 @@ struct nonmaxsuppression
selected_boxes_inside_class
.
reserve
(
max_output_shape
.
elements
());
// iterate over batches and classes
shape
comp_s
{
shape
::
double_type
,
{
num_batches
,
num_classes
}};
shape_for_each
(
comp_s
,
[
&
](
auto
idx
)
{
shape_for_each
(
comp_s
,
[
&
](
const
auto
&
idx
)
{
auto
batch_idx
=
idx
[
0
];
auto
class_idx
=
idx
[
1
];
// index offset for this class
...
...
src/include/migraphx/op/nonzero.hpp
View file @
0c98c38e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -56,10 +56,10 @@ struct nonzero
std
::
vector
<
std
::
vector
<
std
::
size_t
>>
vec_idx
;
auto
s
=
args
.
front
().
get_shape
();
args
.
front
().
visit
([
&
](
auto
v
)
{
shape_for_each
(
s
,
[
&
](
auto
idx
)
{
if
(
not
float_equal
(
v
[
s
.
index
(
idx
)
],
0
))
shape_for_each
(
s
,
[
&
](
const
auto
&
idx_v
,
size_t
idx
)
{
if
(
not
float_equal
(
v
[
idx
],
0
))
{
vec_idx
.
push_back
(
idx
);
vec_idx
.
push_back
(
idx
_v
);
}
});
});
...
...
src/include/migraphx/op/pooling.hpp
View file @
0c98c38e
...
...
@@ -29,6 +29,7 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/pad_calc.hpp>
#include <migraphx/par_for.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/dyn_output.hpp>
...
...
@@ -40,10 +41,20 @@ namespace migraphx {
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
// The Pooling operator mostly follows the specifications for the Onnx pooling op.
// It assumes an NCHW layout, extended to support any number of spatial dimensions
// from 1 on up; dimensions are <batch index, channels, spatial dimensions...>
//
struct
pooling
{
// Class members mode, ceil_mode, padding_mode have similar names but refer to separate
// concepts.
pooling_mode
mode
=
{
pooling_mode
::
average
};
// If the input has rank other than 4 then padding, stride, lengths must all be specified
// since the defaults have 2-dimensions. Exception: padding not required if
// padding_mode != default_
// Padding along each spatial input dimension
// Can be ndim or 2*ndim values where ndim is size of lengths
// ndim values means pad the same before and after each dimension
...
...
@@ -63,13 +74,14 @@ struct pooling
// ceiling mode is a flag affecting output size
// or equivalently, placements of the pooling kernel.
// When true, round the size upwards, possibly
// including partial placements where the kernel extends beyond the edge
// of input and even padding. When false, round down so that all
// When true, round the size upwards. When false, round down so that all
// kernel placements fit but some input values may be dropped.
bool
ceil_mode
=
false
;
int
lp_order
=
2
;
// Mode for auto padding. default_ indicates no auto padding.
padding_mode_t
padding_mode
=
padding_mode_t
::
default_
;
// Global pooling with dynamic shape input
bool
dyn_global
=
false
;
...
...
@@ -84,6 +96,7 @@ struct pooling
{
return
pack
(
f
(
self
.
mode
,
"mode"
),
f
(
self
.
padding
,
"padding"
),
f
(
self
.
padding_mode
,
"padding_mode"
),
f
(
self
.
stride
,
"stride"
),
f
(
self
.
lengths
,
"lengths"
),
f
(
self
.
ceil_mode
,
"ceil_mode"
),
...
...
@@ -97,7 +110,8 @@ struct pooling
{
if
(
dyn_global
)
return
;
if
((
padding
.
size
()
!=
stride
.
size
()
and
(
padding
.
size
())
!=
stride
.
size
()
*
2
)
or
if
((
padding_mode
!=
default_
and
padding
.
size
()
!=
stride
.
size
()
and
(
padding
.
size
())
!=
stride
.
size
()
*
2
)
or
stride
.
size
()
!=
lengths
.
size
())
{
MIGRAPHX_THROW
(
"POOLING: inconsistent attribute sizes"
);
...
...
@@ -137,8 +151,19 @@ struct pooling
std
::
size_t
padding_factor
=
2
*
padding
[
i
];
if
(
padding
.
size
()
==
2
*
kdims
)
padding_factor
=
padding
[
i
]
+
padding
[
i
+
kdims
];
assert
(
input_lens
[
i
+
2
]
+
padding_factor
>=
lengths
[
i
]);
std
::
size_t
dim_size
=
input_lens
[
i
+
2
]
+
padding_factor
-
lengths
[
i
];
std
::
size_t
dim_size
;
if
(
input_lens
[
i
+
2
]
+
padding_factor
<
lengths
[
i
])
{
if
(
padding_mode
==
default_
)
MIGRAPHX_THROW
(
"POOLING: not enough padding for the given kernel size"
);
// lengths can be legitimately larger only if we're doing auto padding
// with a dynamic shape, in which case given padding is ignored. Set a dummy value.
dim_size
=
2
;
}
else
{
dim_size
=
input_lens
[
i
+
2
]
+
padding_factor
-
lengths
[
i
];
}
std
::
size_t
len
=
(
ceil_mode
)
?
dim_size
/
stride
[
i
]
+
...
...
@@ -151,17 +176,13 @@ struct pooling
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
)
.
min_ndims
(
3
)
;
check_attribute_size
();
const
shape
&
input
=
inputs
.
at
(
0
);
auto
padding
_size
=
padding
.
size
();
auto
stride
_size
=
stride
.
size
();
size_t
kdims
=
input
.
ndim
()
-
2
;
if
(
input
.
ndim
()
<
3
)
{
MIGRAPHX_THROW
(
"POOLING: input must have 3 or more dimensions and be nonempty"
);
}
if
(
input
.
ndim
()
*
2
!=
padding_size
+
4
and
input
.
ndim
()
!=
padding_size
+
2
)
if
(
input
.
ndim
()
!=
stride_size
+
2
)
{
MIGRAPHX_THROW
(
"POOLING: input and attribute size mismatch!"
);
}
...
...
@@ -179,6 +200,28 @@ struct pooling
}
return
{
input
.
type
(),
output_dyn_dims
};
}
else
if
(
padding_mode
!=
default_
)
{
const
size_t
num_spatial_dims
=
inputs
[
0
].
ndim
()
-
2
;
const
shape
&
x_shape
=
inputs
[
0
];
// same as convolution::dynamic_compute_shape()
for
(
std
::
size_t
i
=
0
;
i
<
num_spatial_dims
;
++
i
)
{
auto
ceil_div
=
[](
std
::
size_t
x
,
std
::
size_t
y
)
{
return
(
x
+
y
-
1
)
/
y
;
};
auto
s
=
stride
[
i
];
auto
x
=
x_shape
.
dyn_dims
()[
i
+
2
];
std
::
set
<
std
::
size_t
>
optimals
{};
std
::
transform
(
x
.
optimals
.
begin
(),
x
.
optimals
.
end
(),
std
::
inserter
(
optimals
,
optimals
.
begin
()),
[
&
](
auto
o
)
{
return
ceil_div
(
o
,
s
);
});
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
ceil_div
(
x
.
min
,
s
),
ceil_div
(
x
.
max
,
s
),
optimals
});
}
return
{
input
.
type
(),
output_dyn_dims
};
}
else
{
// does not compute optimals
...
...
@@ -267,6 +310,7 @@ struct pooling
Out
&
output
,
const
In
&
input
,
const
std
::
vector
<
std
::
size_t
>&
kernel_dims
,
const
std
::
vector
<
std
::
size_t
>&
padding_vals
,
Op
op
)
const
{
auto
in_s
=
input
.
get_shape
();
...
...
@@ -283,9 +327,9 @@ struct pooling
// For each spatial dimension, find starting and ending index of pooling kernel
for
(
std
::
size_t
dim
=
2
;
dim
<
n_dim
;
++
dim
)
{
auto
d_2
=
dim
-
2
;
int
start
=
static_cast
<
int
>
(
idx_o
[
dim
]
*
stride
[
d_2
])
-
static_cast
<
int
>
(
padding
[
d_2
]);
auto
d_2
=
dim
-
2
;
int
start
=
static_cast
<
int
>
(
idx_o
[
dim
]
*
stride
[
d_2
])
-
static_cast
<
int
>
(
padding
_vals
[
d_2
]);
int
end
;
// NOLINT
if
(
count_include_pad
and
ceil_mode
and
(
mode
!=
pooling_mode
::
max
))
...
...
@@ -297,7 +341,7 @@ struct pooling
// Check if this kernel extends beyond the padding at end of dimension
end
=
std
::
min
(
start
+
kernel_dims
[
d_2
],
in_lens
[
dim
]
+
static_cast
<
int
>
(
padding
[
d_2
]));
in_lens
[
dim
]
+
static_cast
<
int
>
(
padding
_vals
[
d_2
]));
}
else
{
...
...
@@ -316,11 +360,12 @@ struct pooling
}
shape
win_shape
{
output_shape
.
type
(),
win_size
};
auto
pool_size
=
win_shape
.
elements
();
double
output_val
=
op
.
template
init
<
Type
>();
// for each element in the window...
shape_for_each
(
win_shape
,
[
&
](
auto
idx_w
)
{
shape_for_each
(
win_shape
,
[
&
](
const
auto
&
idx_w
)
{
// the coordinates of this element
auto
idx
=
idx_o
;
...
...
@@ -354,30 +399,65 @@ struct pooling
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
dyn_out
.
computed_shape
}
;
argument
result
;
auto
input_lens
=
args
[
0
].
get_shape
().
lens
();
std
::
vector
<
std
::
size_t
>
kernel_dims
;
shape
output_shape
;
// If we have to auto-calculate padding, it will be passed to calc_pooling() as an argument
// instead of the member variable padding.
std
::
vector
<
std
::
size_t
>
temp_padding
(
padding
);
if
(
dyn_global
)
{
// for dynamic GlobalPooling, there's no padding
kernel_dims
.
insert
(
kernel_dims
.
end
(),
input_lens
.
begin
()
+
2
,
input_lens
.
end
());
output_shape
=
dyn_out
.
computed_shape
;
result
=
dyn_out
.
computed_shape
;
}
else
else
if
((
padding_mode
!=
op
::
padding_mode_t
::
default_
))
{
// if padding_mode is set, input was a dynamic size. Calculate padded size now.
// kernel_lens is the same as kernel_dims, but prepended with the 2 non-
// spatial dimensions. For size computations, it's used like the weights
// tensor for convolutions.
std
::
vector
<
std
::
size_t
>
kernel_lens
;
kernel_lens
.
insert
(
kernel_lens
.
end
(),
input_lens
.
begin
(),
input_lens
.
begin
()
+
2
);
kernel_lens
.
insert
(
kernel_lens
.
end
(),
lengths
.
begin
(),
lengths
.
end
());
kernel_dims
=
this
->
lengths
;
auto
type
=
args
[
0
].
get_shape
().
type
();
// dilation not currently supported for pooling, so default to all 1's
temp_padding
=
calc_dyn_auto_pad
(
input_lens
,
kernel_lens
,
stride
,
{
1
,
1
},
bool
(
padding_mode
==
op
::
same_upper
));
output_shape
=
compute_padded_pool_shape
(
args
[
0
].
get_shape
(),
shape
(
type
,
kernel_dims
),
temp_padding
,
stride
,
{
1
,
1
});
result
=
argument
(
output_shape
);
}
else
// fixed/static input
{
kernel_dims
=
this
->
lengths
;
output_shape
=
dyn_out
.
computed_shape
;
result
=
dyn_out
.
computed_shape
;
}
// Perform the computation and populate result
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
using
type
=
typename
decltype
(
output
)
::
value_type
;
switch
(
mode
)
{
case
migraphx
::
op
::
pooling_mode
::
average
:
calc_pooling
<
type
>
(
dyn_out
.
computed_shape
,
output
,
input
,
kernel_dims
,
avg_pool
{});
calc_pooling
<
type
>
(
output_shape
,
output
,
input
,
kernel_dims
,
temp_padding
,
avg_pool
{});
break
;
case
migraphx
::
op
::
pooling_mode
::
max
:
calc_pooling
<
type
>
(
dyn_out
.
computed_shape
,
output
,
input
,
kernel_dims
,
max_pool
{});
calc_pooling
<
type
>
(
output_shape
,
output
,
input
,
kernel_dims
,
temp_padding
,
max_pool
{});
break
;
case
migraphx
::
op
::
pooling_mode
::
lpnorm
:
calc_pooling
<
type
>
(
dyn_out
.
com
put
ed
_shape
,
output
,
input
,
kernel_dims
,
lpnorm_pool
{
lp_order
});
out
put_shape
,
output
,
input
,
kernel_dims
,
temp_padding
,
lpnorm_pool
{
lp_order
});
break
;
}
});
...
...
src/include/migraphx/op/reduce_op.hpp
View file @
0c98c38e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -163,7 +163,7 @@ struct reduce_op : op_name<Derived>
auto
&
self
=
static_cast
<
const
Derived
&>
(
*
this
);
auto
data_idx
=
out_idx
;
accumulator
val
=
self
.
init
();
shape_for_each
(
batch_shape
,
[
&
](
auto
b_idx
)
{
shape_for_each
(
batch_shape
,
[
&
](
const
auto
&
b_idx
)
{
this
->
tune_dims
(
tuned_axes
,
b_idx
,
data_idx
);
accumulator
x
=
input
(
data_idx
.
begin
(),
data_idx
.
end
());
val
=
self
.
op
()(
accumulator
{
self
.
input
()(
x
)},
val
);
...
...
src/include/migraphx/op/reverse.hpp
View file @
0c98c38e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -70,13 +70,13 @@ struct reverse
argument
result
{
s
};
auto
lens
=
s
.
lens
();
visit_all
(
result
,
args
.
front
())([
&
](
auto
output
,
auto
input
)
{
shape_for_each
(
s
,
[
&
](
const
auto
&
out_idx
)
{
auto
in_idx
=
out_idx
;
shape_for_each
(
s
,
[
&
](
const
auto
&
out_idx_v
,
size_t
out_idx
)
{
auto
in_idx
=
out_idx
_v
;
for
(
const
auto
&
axis
:
axes
)
{
in_idx
[
axis
]
=
lens
[
axis
]
-
1
-
out_idx
[
axis
];
in_idx
[
axis
]
=
lens
[
axis
]
-
1
-
out_idx
_v
[
axis
];
}
output
[
s
.
index
(
out_idx
)
]
=
input
[
s
.
index
(
in_idx
)];
output
[
out_idx
]
=
input
[
s
.
index
(
in_idx
)];
});
});
...
...
src/include/migraphx/op/roialign.hpp
View file @
0c98c38e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -113,10 +113,9 @@ struct roialign
{
std
::
vector
<
pos_weight
>
results
(
bin_grid_size
[
0
]
*
bin_grid_size
[
1
]
*
output_height
*
output_width
);
shape_for_each
(
comp_s
,
[
&
](
auto
idx
)
{
std
::
array
<
std
::
size_t
,
2
>
p
=
{
idx
[
0
],
idx
[
1
]};
std
::
array
<
std
::
size_t
,
2
>
i
=
{
idx
[
2
],
idx
[
3
]};
auto
index
=
comp_s
.
index
(
idx
);
shape_for_each
(
comp_s
,
[
&
](
const
auto
&
idx_v
,
size_t
index
)
{
std
::
array
<
std
::
size_t
,
2
>
p
=
{
idx_v
[
0
],
idx_v
[
1
]};
std
::
array
<
std
::
size_t
,
2
>
i
=
{
idx_v
[
2
],
idx_v
[
3
]};
std
::
array
<
float
,
2
>
xy
{};
std
::
array
<
int64_t
,
2
>
low
{};
...
...
@@ -255,7 +254,7 @@ struct roialign
std
::
vector
<
std
::
size_t
>
comp_lens1
=
{
channels
,
out_dims
[
0
],
out_dims
[
1
]};
shape
comp_s1
{
migraphx
::
shape
::
float_type
,
comp_lens1
};
std
::
vector
<
int64_t
>
vec_index
(
channels
,
0
);
shape_for_each
(
comp_s1
,
[
&
](
auto
idx
)
{
shape_for_each
(
comp_s1
,
[
&
](
const
auto
&
idx
)
{
auto
c
=
idx
[
0
];
auto
ph
=
idx
[
1
];
auto
pw
=
idx
[
2
];
...
...
src/include/migraphx/op/scatter.hpp
View file @
0c98c38e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
src/include/migraphx/op/slice.hpp
View file @
0c98c38e
...
...
@@ -27,19 +27,34 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/normalize_attributes.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
/**
* Slice operator that accepts variable axes, starts and ends.
*
* Attributes:
* axes: constant axes to slice over (optional)
* starts: constant slice starting indices (optional)
* ends: constant slice ending indices (optional)
*
* Parameters:
* data: the input tensor to slice (dynamic or static shape)
* input_starts: starting indicies of slice (optional, static shape)
* input_ends: ending indicies of slice (optional, static shape)
* input_axes: axes to slice over (optional, static shape)
*/
struct
slice
{
std
::
vector
<
int64_t
>
axes
;
std
::
vector
<
int64_t
>
starts
;
std
::
vector
<
int64_t
>
ends
;
std
::
vector
<
int64_t
>
axes
{}
;
std
::
vector
<
int64_t
>
starts
{}
;
std
::
vector
<
int64_t
>
ends
{}
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
...
...
@@ -48,8 +63,8 @@ struct slice
}
/**
* Ensure that attribute vectors axes, starts, and ends are all the same size and values are
in
* limits.
* Ensure that attribute vectors axes, starts, and ends are all the same size and values are
*
within
limits.
*/
value
attributes
()
const
{
...
...
@@ -70,6 +85,90 @@ struct slice
std
::
string
name
()
const
{
return
"slice"
;
}
/**
* Computes the slice output shape dimensions for given starts, ends,and axes.
* Templated to also handle tensor views.
* Possibily different type between [in_starts, in_ends] and [in_axes] if in_axes is this
* object's axes attribute. Assumes in_starts and in_ends are normalized; in_axes are valid.
*/
template
<
class
A
,
class
B
>
std
::
vector
<
std
::
size_t
>
lens_calc
(
const
std
::
vector
<
std
::
size_t
>&
lengths
,
A
in_starts
,
A
in_ends
,
B
in_axes
)
const
{
auto
new_lens
=
lengths
;
for
(
std
::
size_t
i
=
0
;
i
<
in_axes
.
size
();
++
i
)
{
auto
axis
=
in_axes
[
i
];
new_lens
[
axis
]
=
in_ends
[
i
]
-
in_starts
[
i
];
}
return
new_lens
;
}
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
,
3
,
4
);
auto
input_shape
=
inputs
[
0
];
if
(
inputs
.
size
()
==
1
)
{
auto
t
=
input_shape
.
type
();
if
(
input_shape
.
dynamic
()
and
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
axis
)
{
return
not
input_shape
.
dyn_dims
()[
axis
].
is_fixed
();
}))
{
MIGRAPHX_THROW
(
"SLICE: slicing is not allowed on non-fixed dynamic input axis "
);
}
if
(
input_shape
.
dynamic
())
{
return
shape
{
t
,
lens_calc
(
input_shape
.
min_lens
(),
starts
,
ends
,
axes
),
lens_calc
(
input_shape
.
max_lens
(),
starts
,
ends
,
axes
),
{}};
}
else
{
return
shape
{
t
,
lens_calc
(
input_shape
.
lens
(),
starts
,
ends
,
axes
),
input_shape
.
strides
()};
}
}
else
{
// check that starts, ends, and optionally input_axes are all 1D, have the same
// dimension, and are static
check_shapes
{
inputs
.
begin
()
+
1
,
inputs
.
end
(),
std
::
string
(
"SLICE: inputs (starts, ends, and input_axes)"
),
false
}
.
only_dims
(
1
)
.
same_dims
();
auto
dds
=
input_shape
.
to_dynamic
().
dyn_dims
();
if
(
inputs
.
size
()
==
3
)
{
if
(
inputs
[
1
].
lens
().
at
(
0
)
!=
axes
.
size
())
{
MIGRAPHX_THROW
(
"SLICE: inputs starts and ends do not have the same dimension "
"as the axes attribute"
);
}
std
::
for_each
(
axes
.
cbegin
(),
axes
.
cend
(),
[
&
](
const
auto
&
axis
)
{
dds
.
at
(
axis
)
=
{
0
,
dds
.
at
(
axis
).
max
};
});
}
else
{
// if axes is an input, then all the output dimensions could be 0 to the max value
std
::
transform
(
dds
.
begin
(),
dds
.
end
(),
dds
.
begin
(),
[](
auto
dd
)
{
return
shape
::
dynamic_dimension
{
0
,
dd
.
max
};
});
}
return
shape
{
input_shape
.
type
(),
dds
};
}
}
/**
* Calculates the starting offset for the sliced tensor.
* Used in compute when only data input and all other information are in the attributes.
*
* \param s static input shape
*/
auto
compute_offset
(
const
shape
&
s
)
const
{
const
std
::
vector
<
std
::
size_t
>&
lens
=
s
.
lens
();
...
...
@@ -90,80 +189,131 @@ struct slice
offset
+=
starts
[
axis
]
*
strides
[
axis
];
}
}
return
offset
;
return
offset
*
s
.
type_size
()
;
}
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
/**
* Calculates the starting offset for the sliced tensor (for aliasing).
* Used when the starts and/or the axes are inputs.
*
* \param s static input shape
* \param input_starts starting indices of slice
* \param ax_vec axes to slice on
*/
template
<
class
IndView
,
class
Axes
>
auto
compute_offset
(
const
shape
&
s
,
const
IndView
&
input_starts
,
const
Axes
&
ax_vec
)
const
{
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
auto
input_shape
=
inputs
[
0
];
auto
t
=
input_shape
.
type
();
// TODO: When support for dynamic shapes is added to normalize_attributes,
// remove this restriction.
if
(
input_shape
.
dynamic
()
and
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
axis
)
{
return
not
input_shape
.
dyn_dims
()[
axis
].
is_fixed
();
}))
auto
ret
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
ax_vec
.
size
();
++
i
)
{
MIGRAPHX_THROW
(
"SLICE: slicing is not allowed on non-fixed dynamic input axis "
);
auto
axis
=
ax_vec
[
i
];
ret
+=
input_starts
[
i
]
*
s
.
strides
().
at
(
axis
);
}
return
ret
*
s
.
type_size
();
}
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>
normalize_inputs
(
const
shape
&
input_shape
,
const
std
::
vector
<
int64_t
>&
input_starts
,
const
std
::
vector
<
int64_t
>&
input_ends
)
const
{
auto
attrs
=
this
->
attributes
().
at
(
"normalize_axes"
);
return
{{
"input_starts"
,
normalize_indices
(
input_starts
,
this
->
axes
,
input_shape
,
attrs
.
at
(
"starts"
),
"Slice variable input_starts"
)},
{
"input_ends"
,
normalize_indices
(
input_ends
,
this
->
axes
,
input_shape
,
attrs
.
at
(
"ends"
),
"Slice variable input_ends"
)}};
}
/**
* Three input version of the normalize_inputs.
* This one also checks that the input_axes are valid.
*/
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>
normalize_inputs
(
shape
input_shape
,
const
std
::
vector
<
int64_t
>&
input_starts
,
const
std
::
vector
<
int64_t
>&
input_ends
,
const
std
::
vector
<
int64_t
>&
input_axes
)
const
{
auto
attrs
=
this
->
attributes
().
at
(
"normalize_axes"
);
auto
norm_axes
=
normalize_axes
(
input_axes
,
input_shape
,
attrs
.
at
(
"axes"
),
"Slice variable input_axes"
);
return
{{
"input_starts"
,
normalize_indices
(
input_starts
,
norm_axes
,
input_shape
,
attrs
.
at
(
"starts"
),
"Slice variable input_starts"
)},
{
"input_ends"
,
normalize_indices
(
input_ends
,
norm_axes
,
input_shape
,
attrs
.
at
(
"ends"
),
"Slice variable input ends"
)},
{
"input_axes"
,
norm_axes
}};
}
// For a static shape, old_lens will be adjusted to a new size
// for those axes that are sliced.
// For dynamic shape, the adjusted old_lens become the new max values,
// while updating the old mins and optimals if possible.
std
::
vector
<
std
::
size_t
>
new_mins
;
std
::
vector
<
std
::
size_t
>
old_lens
;
std
::
vector
<
std
::
size_t
>
old_strides
;
// Doesn't handle optimals
if
(
input_shape
.
dynamic
())
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
auto
input
=
args
[
0
];
auto
input_shape
=
input
.
get_shape
();
switch
(
args
.
size
())
{
old_lens
=
input_shape
.
max_lens
();
new_mins
=
input_shape
.
min_lens
();
case
1
:
{
std
::
size_t
offset
=
compute_offset
(
input_shape
);
return
{
dyn_out
.
computed_shape
,
[
=
]
{
return
input
.
data
()
+
offset
;
}};
}
else
{
old_lens
=
input_shape
.
lens
();
// For static shape (including during eval step after a dynamic input) the strides are
// indexed into the pre-slice array, so they are larger than the apparent size of the
// resulting shape.
old_strides
=
input_shape
.
strides
();
case
3
:
{
shape
calc_shape
;
std
::
size_t
offset
=
0
;
visit_all
(
args
[
1
],
args
[
2
])([
&
](
auto
input_starts
,
auto
input_ends
)
{
auto
norm_inputs
=
normalize_inputs
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
input_ends
.
template
to_vector
<
int64_t
>());
offset
=
compute_offset
(
input_shape
,
norm_inputs
.
at
(
"input_starts"
),
this
->
axes
);
calc_shape
=
{
input_shape
.
type
(),
lens_calc
(
input_shape
.
lens
(),
norm_inputs
.
at
(
"input_starts"
),
norm_inputs
.
at
(
"input_ends"
),
this
->
axes
),
input_shape
.
strides
()};
});
return
{
calc_shape
,
[
=
]
{
return
input
.
data
()
+
offset
;
}};
}
std
::
vector
<
std
::
size_t
>
new_lens
=
old_lens
;
for
(
std
::
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
auto
axis
=
axes
[
i
];
size_t
sliced_length
=
ends
[
i
]
-
starts
[
i
];
// A Numpy indexing convention: a slice size larger than the actual dimension
// is legal and the "ends" value is clipped to the axis size
new_lens
[
axis
]
=
std
::
min
(
new_lens
[
axis
],
sliced_length
);
if
(
input_shape
.
dynamic
())
{
// TODO: when non-fixed shape slicing is allowed, this will be different than
// sliced_length, making use of TBD start/end values.
std
::
size_t
sliced_min_length
=
ends
[
i
]
-
starts
[
i
];
// if the slice size is smaller than maxes but larger than mins
new_mins
[
axis
]
=
std
::
min
(
sliced_min_length
,
new_mins
[
axis
]);
}
case
4
:
{
shape
calc_shape
;
std
::
size_t
offset
=
0
;
visit_all
(
args
[
1
],
args
[
2
],
args
[
3
])(
[
&
](
auto
input_starts
,
auto
input_ends
,
auto
input_axes
)
{
auto
norm_inputs
=
normalize_inputs
(
input_shape
,
input_starts
.
template
to_vector
<
int64_t
>(),
input_ends
.
template
to_vector
<
int64_t
>(),
input_axes
.
template
to_vector
<
int64_t
>());
offset
=
compute_offset
(
input_shape
,
norm_inputs
.
at
(
"input_starts"
),
norm_inputs
.
at
(
"input_axes"
));
calc_shape
=
shape
{
input_shape
.
type
(),
lens_calc
(
input_shape
.
lens
(),
norm_inputs
.
at
(
"input_starts"
),
norm_inputs
.
at
(
"input_ends"
),
norm_inputs
.
at
(
"input_axes"
)),
input_shape
.
strides
()};
});
return
{
calc_shape
,
[
=
]
{
return
input
.
data
()
+
offset
;
}};
}
if
(
input_shape
.
dynamic
())
{
return
shape
{
t
,
new_mins
,
new_lens
,
{}}
;
default:
{
// Should never get here; covering in case some code change occurs
MIGRAPHX_THROW
(
"SLICE: invalid number of inputs"
)
;
}
else
{
return
shape
{
t
,
new_lens
,
old_strides
};
}
}
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
auto
input
=
args
[
0
];
auto
offset
=
compute_offset
(
input
.
get_shape
())
*
dyn_out
.
computed_shape
.
type_size
();
return
{
dyn_out
.
computed_shape
,
[
=
]
{
return
input
.
data
()
+
offset
;
}};
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
...
...
src/include/migraphx/pad_calc.hpp
View file @
0c98c38e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -62,6 +62,14 @@ shape compute_padded_shape(const shape& input,
const
std
::
vector
<
std
::
size_t
>&
stride
,
const
std
::
vector
<
std
::
size_t
>&
dilation
);
// Used for dynamic auto padding of pooling operators where padding needs to be computed at
// evaulation time.
shape
compute_padded_pool_shape
(
const
shape
&
input
,
const
shape
&
kernel
,
const
std
::
vector
<
std
::
size_t
>&
padding
,
const
std
::
vector
<
std
::
size_t
>&
stride
,
const
std
::
vector
<
std
::
size_t
>&
dilation
);
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
...
...
src/include/migraphx/ranges.hpp
View file @
0c98c38e
...
...
@@ -205,7 +205,7 @@ void transform(Range1&& r1, Range2&& r2, Iterator it, F f)
}
template
<
class
Range
>
auto
reverse
(
Range
&
r
)
auto
reverse
(
Range
&
&
r
)
{
return
range
(
std
::
make_reverse_iterator
(
r
.
end
()),
std
::
make_reverse_iterator
(
r
.
begin
()));
}
...
...
src/include/migraphx/shape.hpp
View file @
0c98c38e
...
...
@@ -263,7 +263,7 @@ struct MIGRAPHX_EXPORT shape
/// no padding
bool
packed
()
const
;
/// Returns true i
s
the shape has been transposed. That is the strides are not in descending
/// Returns true i
f
the shape has been transposed. That is the strides are not in descending
/// order
bool
transposed
()
const
;
...
...
src/include/migraphx/shape_for_each.hpp
View file @
0c98c38e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -37,11 +37,11 @@ inline namespace MIGRAPHX_INLINE_NS {
template
<
class
F
>
void
shape_for_each
(
const
migraphx
::
shape
&
s
,
F
f
)
{
// Ensure calls to f use const ref to vector
auto
call
=
[
&
f
](
const
std
::
vector
<
std
::
size_t
>&
i
)
{
f
(
i
);
};
std
::
vector
<
std
::
size_t
>
indices
(
s
.
lens
().
size
());
const
auto
&
index_const_ref
=
indices
;
shape
ss
{
s
.
type
(),
s
.
lens
()};
for
(
std
::
size_t
i
=
0
;
i
<
ss
.
elements
();
i
++
)
size_t
max
=
ss
.
elements
();
for
(
std
::
size_t
i
=
0
;
i
<
max
;
i
++
)
{
std
::
transform
(
ss
.
strides
().
begin
(),
ss
.
strides
().
end
(),
...
...
@@ -51,9 +51,13 @@ void shape_for_each(const migraphx::shape& s, F f)
assert
(
len
>
0
and
stride
>
0
);
return
(
i
/
stride
)
%
len
;
});
call
(
indices
);
if
constexpr
(
std
::
is_invocable
<
F
,
decltype
(
index_const_ref
),
decltype
(
i
)
>
{})
f
(
index_const_ref
,
i
);
else
f
(
index_const_ref
);
}
}
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
...
...
src/include/migraphx/simplify_reshapes.hpp
View file @
0c98c38e
...
...
@@ -38,6 +38,7 @@ struct module;
*/
struct
MIGRAPHX_EXPORT
simplify_reshapes
{
size_t
depth
=
4
;
std
::
string
name
()
const
{
return
"simplify_reshapes"
;
}
void
apply
(
module
&
m
)
const
;
};
...
...
src/include/migraphx/stringutils.hpp
View file @
0c98c38e
...
...
@@ -86,7 +86,7 @@ inline std::string join_strings(Strings strings, const std::string& delim)
inline
std
::
vector
<
std
::
string
>
split_string
(
const
std
::
string
&
s
,
char
delim
)
{
std
::
vector
<
std
::
string
>
elems
;
std
::
stringstream
ss
(
s
+
' '
);
std
::
stringstream
ss
(
s
+
delim
);
std
::
string
item
;
while
(
std
::
getline
(
ss
,
item
,
delim
))
{
...
...
@@ -149,6 +149,10 @@ interpolate_string(const std::string& input, F f, std::string start = "${", std:
result
.
append
(
it
,
next_start
);
if
(
next_start
==
input
.
end
())
break
;
if
(
next_end
==
input
.
end
())
{
throw
std
::
runtime_error
(
"Unbalanced brackets"
);
}
auto
r
=
f
(
next_start
+
start
.
size
(),
next_end
);
result
.
append
(
r
.
begin
(),
r
.
end
());
it
=
next_end
+
end
.
size
();
...
...
src/memory_coloring.cpp
View file @
0c98c38e
...
...
@@ -23,9 +23,9 @@
*/
#include <migraphx/memory_coloring.hpp>
#include <migraphx/module.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/algorithm.hpp>
#include <migraphx/ranges.hpp>
...
...
@@ -382,7 +382,8 @@ void memory_coloring::apply(module& m) const
auto
s
=
ins
->
get_shape
();
std
::
size_t
offset
=
seg
.
first
*
alignment
;
assert
(
offset
<
n
);
m
.
replace_instruction
(
ins
,
op
::
load
{
s
,
offset
},
mem
);
m
.
replace_instruction
(
ins
,
make_op
(
"load"
,
{{
"shape"
,
to_value
(
s
)},
{
"offset"
,
offset
}}),
mem
);
}
// Replace zero allocation
...
...
@@ -391,7 +392,8 @@ void memory_coloring::apply(module& m) const
if
(
ins
->
name
()
!=
allocation_op
)
continue
;
assert
(
ins
->
get_shape
().
bytes
()
==
0
);
m
.
replace_instruction
(
ins
,
op
::
load
{
ins
->
get_shape
(),
0
},
mem
);
m
.
replace_instruction
(
ins
,
make_op
(
"load"
,
{{
"shape"
,
to_value
(
ins
->
get_shape
())},
{
"offset"
,
0
}}),
mem
);
}
// Remove scratch parameter if its not used
...
...
src/normalize_attributes.cpp
View file @
0c98c38e
...
...
@@ -26,7 +26,7 @@
#include <migraphx/normalize_attributes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/op/common.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -49,6 +49,10 @@ auto tune_attribute(const std::vector<int64_t>& vec,
Message
m
)
{
std
::
vector
<
int64_t
>
result
(
vec
);
if
(
result
.
empty
())
{
return
result
;
};
int64_t
n_rank
=
input_shape
.
ndim
();
std
::
vector
<
op
::
normalize_attribute
>
vec_attrs
=
val
.
to_vector
<
op
::
normalize_attribute
>
();
if
(
contains
(
vec_attrs
,
op
::
normalize_attribute
::
use_output
))
...
...
@@ -188,20 +192,27 @@ bool normalize_attributes(operation& op, const shape& input_shape)
auto
val
=
op
.
to_value
();
if
(
attrs
.
contains
(
"normalize_padding"
))
{
auto
padding
=
val
.
at
(
attrs
.
at
(
"normalize_padding"
).
to
<
std
::
string
>
());
auto
padding_size
=
padding
.
size
();
auto
padding_start
=
2
;
if
(
padding_size
==
2
*
(
input_shape
.
ndim
()
-
padding_start
))
tuned
=
true
;
else
if
(
padding_size
!=
(
input_shape
.
ndim
()
-
padding_start
))
MIGRAPHX_THROW
(
"inconsistent padding size"
);
else
bool
use_auto_padding
=
(
val
.
contains
(
"padding_mode"
)
and
(
val
.
at
(
"padding_mode"
).
to
<
int
>
()
!=
migraphx
::
op
::
padding_mode_t
::
default_
));
if
(
not
use_auto_padding
)
{
auto
result
=
tune_pad_attribute
(
padding
);
val
[
"padding"
]
=
result
;
op
.
from_value
(
val
);
tuned
=
true
;
auto
padding
=
val
.
at
(
attrs
.
at
(
"normalize_padding"
).
to
<
std
::
string
>
());
auto
padding_size
=
padding
.
size
();
auto
padding_start
=
2
;
if
(
padding_size
==
2
*
(
input_shape
.
ndim
()
-
padding_start
))
tuned
=
true
;
else
if
(
padding_size
!=
(
input_shape
.
ndim
()
-
padding_start
))
{
MIGRAPHX_THROW
(
"normalize_attributes: inconsistent padding vector size "
);
}
else
{
auto
result
=
tune_pad_attribute
(
padding
);
val
[
"padding"
]
=
result
;
op
.
from_value
(
val
);
tuned
=
true
;
}
}
}
if
(
not
attrs
.
contains
(
"normalize_axes"
))
...
...
@@ -251,5 +262,22 @@ bool normalize_attributes(operation& op, const shape& input_shape)
return
tuned
;
}
std
::
vector
<
int64_t
>
normalize_axes
(
const
std
::
vector
<
int64_t
>&
axes
,
const
shape
&
input_shape
,
const
value
&
attr_val
,
const
std
::
string
&
prefix
)
{
return
tune_attribute
(
axes
,
{},
attr_val
,
input_shape
,
[
&
]
{
return
prefix
;
});
}
std
::
vector
<
int64_t
>
normalize_indices
(
const
std
::
vector
<
int64_t
>&
indices
,
const
std
::
vector
<
int64_t
>&
axes
,
const
shape
&
input_shape
,
const
value
&
attr_val
,
const
std
::
string
&
prefix
)
{
return
tune_attribute
(
indices
,
axes
,
attr_val
,
input_shape
,
[
&
]
{
return
prefix
;
});
}
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_pooling.cpp
View file @
0c98c38e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -151,26 +151,6 @@ struct parse_pooling : op_parser<parse_pooling>
kdims
,
paddings
.
size
()
/
2
,
"PARSE_POOLING: inconsistent explicit paddings"
);
}
if
(
contains
(
info
.
attributes
,
"auto_pad"
))
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: Auto padding pooling with dynamic input shape not supported"
);
}
else
{
values
[
"padding"
].
clear
();
// return paddings could be empty, then setting to 0 for no padding
cal_auto_padding_size
(
info
,
values
,
values
[
"lengths"
].
to_vector
<
std
::
size_t
>
(),
{
1
,
1
},
in_shape
.
lens
(),
paddings
);
}
}
if
(
paddings
.
size
()
!=
2
*
kdims
)
{
paddings
.
resize
(
kdims
*
2
);
...
...
@@ -192,6 +172,36 @@ struct parse_pooling : op_parser<parse_pooling>
// used to calculate the supposed output shape
std
::
vector
<
int64_t
>
orig_padding
=
paddings
;
// TODO: add parsing for dilations
if
(
contains
(
info
.
attributes
,
"auto_pad"
)
and
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
())
!=
"NOTSET"
)
{
auto
auto_pad
=
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
());
// don't use the given padding sizes, if any
// values["padding"].clear();
if
(
in_shape
.
dynamic
())
{
// set padding_mode to trigger auto padding at runtime
bool
is_same_upper
=
(
auto_pad
.
find
(
"SAME_UPPER"
)
!=
std
::
string
::
npos
);
values
[
"padding_mode"
]
=
is_same_upper
?
to_value
(
op
::
padding_mode_t
::
same_upper
)
:
to_value
(
op
::
padding_mode_t
::
same_lower
);
}
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size
(
info
,
values
,
values
[
"lengths"
].
to_vector
<
std
::
size_t
>
(),
std
::
vector
<
size_t
>
(
in_shape
.
ndim
()
-
2
,
1
),
in_shape
.
lens
(),
paddings
);
values
[
"padding"
]
=
paddings
;
// default padding_mode indicates that padding sizes are not calculated dynamically
values
[
"padding_mode"
]
=
migraphx
::
op
::
padding_mode_t
::
default_
;
}
}
std
::
vector
<
int64_t
>
slice_start
;
std
::
vector
<
int64_t
>
slice_end
;
tune_padding_size
(
values
,
paddings
,
count_include_pad
,
slice_start
);
...
...
@@ -208,8 +218,9 @@ struct parse_pooling : op_parser<parse_pooling>
orig_padding
.
insert
(
orig_padding
.
begin
(),
2
,
0
);
op
::
pad
pad
{
orig_padding
,
0.0
f
};
shape
padded_shape
=
pad
.
compute_shape
({
l0
->
get_shape
()});
auto
out_lens
=
make_op
(
"pooling"
,
values
).
compute_shape
({
padded_shape
}).
lens
();
// make an op just to get its output shape
auto
out_lens
=
make_op
(
"pooling"
,
values
).
compute_shape
({
padded_shape
}).
lens
();
// compute slice_end information
slice_end
.
resize
(
slice_start
.
size
());
std
::
transform
(
out_lens
.
begin
()
+
2
,
...
...
src/onnx/parse_resize.cpp
View file @
0c98c38e
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -97,22 +97,19 @@ const auto& get_original_idx_op(const std::string& mode)
static
std
::
vector
<
int
>
calc_neighbor_points
(
const
std
::
vector
<
std
::
vector
<
std
::
vector
<
std
::
size_t
>>>&
vvv_ind
,
int
i_dim
,
const
std
::
vector
<
std
::
vector
<
std
::
size_t
>>
&
vec_dims
,
std
::
vector
<
std
::
vector
<
std
::
size_t
>>
vec_dims
,
const
shape
&
in_s
)
{
if
(
i_dim
==
vvv_ind
.
size
())
{
std
::
vector
<
int
>
vec_ind
;
vec_ind
.
resize
(
vec_dims
.
size
());
std
::
vector
<
int
>
vec_ind
(
vec_dims
.
size
());
std
::
transform
(
vec_dims
.
begin
(),
vec_dims
.
end
(),
vec_ind
.
begin
(),
[
&
](
auto
idx
)
{
return
static_cast
<
int
>
(
in_s
.
index
(
idx
));
});
return
vec_ind
;
}
const
auto
&
vv_ind
=
vvv_ind
[
i_dim
];
const
auto
&
vv_lo
=
vv_ind
.
at
(
0
);
const
auto
&
vv_lo
=
vvv_ind
[
i_dim
][
0
];
std
::
vector
<
std
::
vector
<
std
::
size_t
>>
vec_dims1
;
for
(
std
::
size_t
start
=
0
;
start
<
vec_dims
.
size
();
start
+=
vv_lo
.
size
())
{
...
...
@@ -126,8 +123,8 @@ calc_neighbor_points(const std::vector<std::vector<std::vector<std::size_t>>>& v
});
}
const
auto
&
vv_hi
=
vv_ind
.
at
(
1
)
;
for
(
std
::
size_t
start
=
0
;
start
<
vec_dims
.
size
();
start
+=
vv_
lo
.
size
())
const
auto
&
vv_hi
=
vv
v
_ind
[
i_dim
][
1
]
;
for
(
std
::
size_t
start
=
0
;
start
<
vec_dims
.
size
();
start
+=
vv_
hi
.
size
())
{
std
::
transform
(
vv_hi
.
begin
(),
vv_hi
.
end
(),
...
...
@@ -138,8 +135,8 @@ calc_neighbor_points(const std::vector<std::vector<std::vector<std::size_t>>>& v
return
dim
;
});
}
return
calc_neighbor_points
(
vvv_ind
,
i_dim
+
1
,
vec_dims1
,
in_s
);
vec_dims
.
clear
();
return
calc_neighbor_points
(
vvv_ind
,
i_dim
+
1
,
std
::
move
(
vec_dims1
)
,
in_s
);
}
static
std
::
string
get_coord_trans_mode
(
const
onnx_parser
::
attribute_map
&
attr
)
...
...
@@ -240,7 +237,7 @@ struct parse_resize : op_parser<parse_resize>
auto
arg_out_s
=
arg
->
eval
();
check_arg_empty
(
arg_out_s
,
"PARSE_"
+
opd
.
op_name
+
": dynamic output size is not supported!"
);
arg_out_s
.
visit
([
&
](
auto
ol
)
{
out_lens
.
assign
(
ol
.
begin
(),
ol
.
end
());
});
arg_out_s
.
visit
([
&
](
const
auto
&
ol
)
{
out_lens
.
assign
(
ol
.
begin
(),
ol
.
end
());
});
if
(
out_lens
.
size
()
!=
in_lens
.
size
())
{
...
...
@@ -267,7 +264,7 @@ struct parse_resize : op_parser<parse_resize>
"PARSE_"
+
opd
.
op_name
+
": dynamic input scale is not supported!"
);
arg_scale
.
visit
([
&
](
auto
v
)
{
vec_scale
.
assign
(
v
.
begin
(),
v
.
end
());
});
arg_scale
.
visit
([
&
](
const
auto
&
v
)
{
vec_scale
.
assign
(
v
.
begin
(),
v
.
end
());
});
if
(
in_lens
.
size
()
!=
vec_scale
.
size
())
{
MIGRAPHX_THROW
(
"PARSE_"
+
opd
.
op_name
+
...
...
@@ -300,15 +297,15 @@ struct parse_resize : op_parser<parse_resize>
// map out_idx to in_idx
auto
nearest_op
=
get_nearest_op
(
nearest_mode
);
shape_for_each
(
out_s
,
[
&
](
auto
idx
)
{
auto
in_idx
=
idx
;
shape_for_each
(
out_s
,
[
&
](
const
auto
&
out_idx_v
,
size_t
out_
idx
)
{
std
::
vector
<
size_t
>
in_idx
(
out_idx_v
.
size
())
;
for
(
auto
ii
=
0
;
ii
<
in_lens
.
size
();
++
ii
)
{
auto
idx_val
=
idx_op
(
in_lens
[
ii
],
out_lens
[
ii
],
idx
[
ii
],
vec_scale
[
ii
]);
auto
idx_val
=
idx_op
(
in_lens
[
ii
],
out_lens
[
ii
],
out_
idx
_v
[
ii
],
vec_scale
[
ii
]);
in_idx
[
ii
]
=
nearest_op
(
in_lens
[
ii
],
idx_val
);
}
ind
[
out_
s
.
index
(
idx
)
]
=
static_cast
<
int64_t
>
(
in_s
.
index
(
in_idx
));
ind
[
out_idx
]
=
static_cast
<
int64_t
>
(
in_s
.
index
(
in_idx
));
});
shape
ind_s
{
shape
::
int32_type
,
out_lens
};
...
...
@@ -323,24 +320,21 @@ struct parse_resize : op_parser<parse_resize>
// get the number of dimensions
std
::
size_t
n_dim
=
out_lens
.
size
();
std
::
vector
<
std
::
vector
<
std
::
size_t
>>
vv_ind
(
2
,
std
::
vector
<
std
::
size_t
>
(
out_elements
));
std
::
vector
<
std
::
vector
<
std
::
vector
<
std
::
size_t
>>>
vvv_ind
(
n_dim
,
vv_ind
);
auto
vvv_ind
=
std
::
vector
(
n_dim
,
std
::
vector
(
2
,
std
::
vector
<
size_t
>
(
out_elements
)));
std
::
vector
<
std
::
vector
<
float
>>
delta
(
n_dim
,
std
::
vector
<
float
>
(
out_elements
));
shape_for_each
(
out_s
,
[
&
](
auto
idx
)
{
auto
in_idx
=
idx
;
auto
out_idx
=
out_s
.
index
(
idx
);
shape_for_each
(
out_s
,
[
&
](
const
auto
&
out_idx_v
,
size_t
out_idx
)
{
for
(
auto
ii
=
0
;
ii
<
in_lens
.
size
();
++
ii
)
{
auto
idx_val
=
idx_op
(
in_lens
[
ii
],
out_lens
[
ii
],
idx
[
ii
],
vec_scale
[
ii
]);
auto
idx_val
=
idx_op
(
in_lens
[
ii
],
out_lens
[
ii
],
out_
idx
_v
[
ii
],
vec_scale
[
ii
]);
vvv_ind
[
ii
][
0
][
out_idx
]
=
nearest_floor
(
in_lens
[
ii
],
idx_val
);
vvv_ind
[
ii
][
1
][
out_idx
]
=
nearest_ceil
(
in_lens
[
ii
],
idx_val
);
delta
[
ii
][
out_idx
]
=
idx_val
-
vvv_ind
[
ii
][
0
][
out_idx
];
}
});
std
::
vector
<
std
::
vector
<
std
::
size_t
>>
vec_dims
(
out_eleme
nts
);
auto
ind
=
calc_neighbor_points
(
vvv_ind
,
0
,
vec_dims
,
in_s
);
auto
ind
=
calc_neighbor_poi
nts
(
vvv_ind
,
0
,
std
::
vector
<
std
::
vector
<
std
::
size_t
>>
(
out_elements
)
,
in_s
);
auto
ind_lens
=
out_lens
;
ind_lens
[
0
]
*=
(
std
::
size_t
{
1
}
<<
n_dim
);
shape
ind_s
{
shape
::
int32_type
,
ind_lens
};
...
...
src/onnx/parse_slice.cpp
View file @
0c98c38e
...
...
@@ -34,16 +34,65 @@ namespace onnx {
struct
parse_slice
:
op_parser
<
parse_slice
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"Slice"
}};
}
struct
slice_desc
{
op
::
slice
op
;
std
::
vector
<
instruction_ref
>
op_args
;
std
::
vector
<
int64_t
>
steps
;
std
::
vector
<
int64_t
>
raxes
;
void
always_insert
(
instruction_ref
arg
)
{
op_args
.
insert
(
op_args
.
begin
(),
arg
);
}
std
::
vector
<
int64_t
>
insert
(
instruction_ref
arg
)
{
std
::
vector
<
int64_t
>
result
;
migraphx
::
argument
arg_value
=
arg
->
eval
();
if
(
arg_value
.
empty
())
{
op_args
.
insert
(
op_args
.
begin
(),
arg
);
}
else
{
arg_value
.
visit
([
&
](
auto
s
)
{
result
.
assign
(
s
.
begin
(),
s
.
end
());
});
}
return
result
;
}
};
instruction_ref
parse
(
const
op_desc
&
/*opd*/
,
const
onnx_parser
&
parser
,
onnx_parser
::
node_info
info
,
std
::
vector
<
instruction_ref
>
args
)
const
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>
&
args
)
const
{
op
::
slice
op
;
auto
sd
=
construct_slice_desc
(
parser
,
info
,
args
);
auto
ins
=
info
.
add_instruction
(
sd
.
op
,
sd
.
op_args
);
if
(
not
sd
.
raxes
.
empty
())
{
ins
=
info
.
add_instruction
(
make_op
(
"reverse"
,
{{
"axes"
,
sd
.
raxes
}}),
ins
);
}
// If any steps are other than default 1, add a "steps" op
if
(
std
::
any_of
(
sd
.
steps
.
begin
(),
sd
.
steps
.
end
(),
[](
auto
s
)
{
return
std
::
abs
(
s
)
!=
1
;
}))
{
std
::
vector
<
int64_t
>
nsteps
;
std
::
transform
(
sd
.
steps
.
begin
(),
sd
.
steps
.
end
(),
std
::
back_inserter
(
nsteps
),
[](
auto
s
)
{
return
std
::
abs
(
s
);
});
return
ins
=
info
.
add_instruction
(
make_op
(
"step"
,
{{
"axes"
,
sd
.
op
.
axes
},
{
"steps"
,
nsteps
}}),
ins
);
}
else
return
ins
;
}
std
::
vector
<
int64_t
>
steps
;
slice_desc
construct_slice_desc
(
const
onnx_parser
&
parser
,
onnx_parser
::
node_info
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
slice_desc
sd
;
// slice can have up to 5 inputs, we first check the 5th one
// to decide whether MIGRAPHX can handle this slice.
...
...
@@ -51,89 +100,73 @@ struct parse_slice : op_parser<parse_slice>
{
migraphx
::
argument
step_arg
=
args
.
back
()
->
eval
();
check_arg_empty
(
step_arg
,
"PARSE_SLICE: cannot handle variable steps for slice"
);
step_arg
.
visit
([
&
](
auto
s
)
{
steps
.
assign
(
s
.
begin
(),
s
.
end
());
});
step_arg
.
visit
([
&
](
auto
s
)
{
sd
.
steps
.
assign
(
s
.
begin
(),
s
.
end
());
});
}
if
(
args
.
size
()
>=
4
)
{
migraphx
::
argument
axes_arg
=
args
.
at
(
3
)
->
eval
();
check_arg_empty
(
axes_arg
,
"PARSE_SLICE: cannot handle variable axes for slice"
);
axes_arg
.
visit
([
&
](
auto
s
)
{
op
.
axes
.
assign
(
s
.
begin
(),
s
.
end
());
});
sd
.
op
.
axes
=
sd
.
insert
(
args
.
at
(
3
));
}
else
if
(
contains
(
info
.
attributes
,
"axes"
))
{
literal
s
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"axes"
));
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
op
.
axes
));
});
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
sd
.
op
.
axes
));
});
}
if
(
args
.
size
()
>=
3
)
{
migraphx
::
argument
end_arg
=
args
.
at
(
2
)
->
eval
();
check_arg_empty
(
end_arg
,
"PARSE_SLICE: cannot handle variable ends for slice"
);
end_arg
.
visit
([
&
](
auto
s
)
{
op
.
ends
.
assign
(
s
.
begin
(),
s
.
end
());
});
sd
.
op
.
ends
=
sd
.
insert
(
args
.
at
(
2
));
}
else
if
(
contains
(
info
.
attributes
,
"ends"
))
{
literal
s
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"ends"
));
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
op
.
ends
));
});
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
sd
.
op
.
ends
));
});
}
if
(
args
.
size
()
>=
2
)
{
migraphx
::
argument
start_arg
=
args
.
at
(
1
)
->
eval
();
check_arg_empty
(
start_arg
,
"PARSE_SLICE: cannot handle variable starts for slice"
);
start_arg
.
visit
([
&
](
auto
s
)
{
op
.
starts
.
assign
(
s
.
begin
(),
s
.
end
());
});
sd
.
op
.
starts
=
sd
.
insert
(
args
.
at
(
1
));
}
else
if
(
contains
(
info
.
attributes
,
"starts"
))
{
literal
s
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"starts"
));
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
op
.
starts
));
});
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
sd
.
op
.
starts
));
});
}
// data input argument
sd
.
always_insert
(
args
.
at
(
0
));
// If axes arg is not given, the default is all of them.
if
(
op
.
axes
.
empty
())
if
(
sd
.
op
.
axes
.
empty
()
and
sd
.
op_args
.
size
()
<
3
)
{
std
::
vector
<
int64_t
>
axes
(
args
[
0
]
->
get_shape
().
ndim
());
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
int64_t
{
0
});
op
.
axes
=
axes
;
sd
.
op
.
axes
=
axes
;
}
std
::
vector
<
int64_t
>
raxes
;
if
(
not
sd
.
steps
.
empty
())
{
if
(
sd
.
op
.
starts
.
empty
()
or
sd
.
op
.
ends
.
empty
())
MIGRAPHX_THROW
(
"PARSE_SLICE: steps and variable starts and ends is not supported"
);
if
(
sd
.
op
.
axes
.
empty
())
MIGRAPHX_THROW
(
"PARSE_SLICE: steps and variable axes is not supported"
);
}
assert
(
steps
.
empty
()
or
steps
.
size
()
==
op
.
axes
.
size
());
assert
(
op
.
axes
.
size
()
==
op
.
starts
.
size
());
assert
(
op
.
axes
.
size
()
==
op
.
ends
.
size
());
assert
(
sd
.
steps
.
empty
()
or
sd
.
steps
.
size
()
==
sd
.
op
.
axes
.
size
());
// If any axes have negative step, prepare to add a "reverse" op
for
(
auto
i
:
range
(
steps
.
size
()))
for
(
auto
i
:
range
(
sd
.
steps
.
size
()))
{
if
(
steps
[
i
]
>=
0
)
if
(
sd
.
steps
[
i
]
>=
0
)
continue
;
op
.
starts
[
i
]
+=
1
;
if
(
op
.
starts
[
i
]
==
0
)
op
.
starts
[
i
]
=
INT_MAX
;
op
.
ends
[
i
]
+=
1
;
raxes
.
push_back
(
op
.
axes
[
i
]);
std
::
swap
(
op
.
starts
[
i
],
op
.
ends
[
i
]);
}
auto
ins
=
info
.
add_instruction
(
op
,
args
[
0
]);
if
(
not
raxes
.
empty
())
{
ins
=
info
.
add_instruction
(
make_op
(
"reverse"
,
{{
"axes"
,
raxes
}}),
ins
);
sd
.
op
.
starts
[
i
]
+=
1
;
if
(
sd
.
op
.
starts
[
i
]
==
0
)
sd
.
op
.
starts
[
i
]
=
INT_MAX
;
sd
.
op
.
ends
[
i
]
+=
1
;
sd
.
raxes
.
push_back
(
sd
.
op
.
axes
[
i
]);
std
::
swap
(
sd
.
op
.
starts
[
i
],
sd
.
op
.
ends
[
i
]);
}
// If any steps are other than default 1, add a "steps" op
if
(
std
::
any_of
(
steps
.
begin
(),
steps
.
end
(),
[](
auto
s
)
{
return
std
::
abs
(
s
)
!=
1
;
}))
{
std
::
vector
<
int64_t
>
nsteps
;
std
::
transform
(
steps
.
begin
(),
steps
.
end
(),
std
::
back_inserter
(
nsteps
),
[](
auto
s
)
{
return
std
::
abs
(
s
);
});
return
ins
=
info
.
add_instruction
(
make_op
(
"step"
,
{{
"axes"
,
op
.
axes
},
{
"steps"
,
nsteps
}}),
ins
);
}
else
return
ins
;
return
sd
;
}
};
...
...
Prev
1
2
3
4
5
6
…
10
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment