Unverified Commit 0c98c38e authored by Ted Themistokleous's avatar Ted Themistokleous Committed by GitHub
Browse files

Merge branch 'develop' into enable_navi_32_ci

parents 1612d8f3 64b306ab
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -125,13 +125,12 @@ struct gather
auto out_lens = data.get_shape().lens();
out_lens[axis] = indices.get_shape().elements();
migraphx::shape out_comp_shape{data.get_shape().type(), out_lens};
shape_for_each(out_comp_shape, [&](const auto& out_idx) {
auto data_idx = out_idx;
auto in_index = indices[data_idx[axis]];
in_index = (in_index < 0) ? in_index + axis_dim_size : in_index;
data_idx[axis] = in_index;
output[out_comp_shape.index(out_idx.begin(), out_idx.end())] =
data(data_idx.begin(), data_idx.end());
shape_for_each(out_comp_shape, [&](const auto& out_idx_v, size_t out_idx) {
auto data_idx = out_idx_v;
auto in_index = indices[data_idx[axis]];
in_index = (in_index < 0) ? in_index + axis_dim_size : in_index;
data_idx[axis] = in_index;
output[out_idx] = data(data_idx.begin(), data_idx.end());
});
}
});
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -258,7 +258,7 @@ struct nonmaxsuppression
selected_boxes_inside_class.reserve(max_output_shape.elements());
// iterate over batches and classes
shape comp_s{shape::double_type, {num_batches, num_classes}};
shape_for_each(comp_s, [&](auto idx) {
shape_for_each(comp_s, [&](const auto& idx) {
auto batch_idx = idx[0];
auto class_idx = idx[1];
// index offset for this class
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -56,10 +56,10 @@ struct nonzero
std::vector<std::vector<std::size_t>> vec_idx;
auto s = args.front().get_shape();
args.front().visit([&](auto v) {
shape_for_each(s, [&](auto idx) {
if(not float_equal(v[s.index(idx)], 0))
shape_for_each(s, [&](const auto& idx_v, size_t idx) {
if(not float_equal(v[idx], 0))
{
vec_idx.push_back(idx);
vec_idx.push_back(idx_v);
}
});
});
......
......@@ -29,6 +29,7 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/pad_calc.hpp>
#include <migraphx/par_for.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/dyn_output.hpp>
......@@ -40,10 +41,20 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
// The Pooling operator mostly follows the specifications for the Onnx pooling op.
// It assumes an NCHW layout, extended to support any number of spatial dimensions
// from 1 on up; dimensions are <batch index, channels, spatial dimensions...>
//
struct pooling
{
// Class members mode, ceil_mode, padding_mode have similar names but refer to separate
// concepts.
pooling_mode mode = {pooling_mode::average};
// If the input has rank other than 4 then padding, stride, lengths must all be specified
// since the defaults have 2-dimensions. Exception: padding not required if
// padding_mode != default_
// Padding along each spatial input dimension
// Can be ndim or 2*ndim values where ndim is size of lengths
// ndim values means pad the same before and after each dimension
......@@ -63,13 +74,14 @@ struct pooling
// ceiling mode is a flag affecting output size
// or equivalently, placements of the pooling kernel.
// When true, round the size upwards, possibly
// including partial placements where the kernel extends beyond the edge
// of input and even padding. When false, round down so that all
// When true, round the size upwards. When false, round down so that all
// kernel placements fit but some input values may be dropped.
bool ceil_mode = false;
int lp_order = 2;
// Mode for auto padding. default_ indicates no auto padding.
padding_mode_t padding_mode = padding_mode_t::default_;
// Global pooling with dynamic shape input
bool dyn_global = false;
......@@ -84,6 +96,7 @@ struct pooling
{
return pack(f(self.mode, "mode"),
f(self.padding, "padding"),
f(self.padding_mode, "padding_mode"),
f(self.stride, "stride"),
f(self.lengths, "lengths"),
f(self.ceil_mode, "ceil_mode"),
......@@ -97,7 +110,8 @@ struct pooling
{
if(dyn_global)
return;
if((padding.size() != stride.size() and (padding.size()) != stride.size() * 2) or
if((padding_mode != default_ and padding.size() != stride.size() and
(padding.size()) != stride.size() * 2) or
stride.size() != lengths.size())
{
MIGRAPHX_THROW("POOLING: inconsistent attribute sizes");
......@@ -137,8 +151,19 @@ struct pooling
std::size_t padding_factor = 2 * padding[i];
if(padding.size() == 2 * kdims)
padding_factor = padding[i] + padding[i + kdims];
assert(input_lens[i + 2] + padding_factor >= lengths[i]);
std::size_t dim_size = input_lens[i + 2] + padding_factor - lengths[i];
std::size_t dim_size;
if(input_lens[i + 2] + padding_factor < lengths[i])
{
if(padding_mode == default_)
MIGRAPHX_THROW("POOLING: not enough padding for the given kernel size");
// lengths can be legitimately larger only if we're doing auto padding
// with a dynamic shape, in which case given padding is ignored. Set a dummy value.
dim_size = 2;
}
else
{
dim_size = input_lens[i + 2] + padding_factor - lengths[i];
}
std::size_t len =
(ceil_mode)
? dim_size / stride[i] +
......@@ -151,17 +176,13 @@ struct pooling
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this, true}.has(1);
check_shapes{inputs, *this, true}.has(1).min_ndims(3);
check_attribute_size();
const shape& input = inputs.at(0);
auto padding_size = padding.size();
auto stride_size = stride.size();
size_t kdims = input.ndim() - 2;
if(input.ndim() < 3)
{
MIGRAPHX_THROW("POOLING: input must have 3 or more dimensions and be nonempty");
}
if(input.ndim() * 2 != padding_size + 4 and input.ndim() != padding_size + 2)
if(input.ndim() != stride_size + 2)
{
MIGRAPHX_THROW("POOLING: input and attribute size mismatch!");
}
......@@ -179,6 +200,28 @@ struct pooling
}
return {input.type(), output_dyn_dims};
}
else if(padding_mode != default_)
{
const size_t num_spatial_dims = inputs[0].ndim() - 2;
const shape& x_shape = inputs[0];
// same as convolution::dynamic_compute_shape()
for(std::size_t i = 0; i < num_spatial_dims; ++i)
{
auto ceil_div = [](std::size_t x, std::size_t y) { return (x + y - 1) / y; };
auto s = stride[i];
auto x = x_shape.dyn_dims()[i + 2];
std::set<std::size_t> optimals{};
std::transform(x.optimals.begin(),
x.optimals.end(),
std::inserter(optimals, optimals.begin()),
[&](auto o) { return ceil_div(o, s); });
output_dyn_dims.push_back(
shape::dynamic_dimension{ceil_div(x.min, s), ceil_div(x.max, s), optimals});
}
return {input.type(), output_dyn_dims};
}
else
{
// does not compute optimals
......@@ -267,6 +310,7 @@ struct pooling
Out& output,
const In& input,
const std::vector<std::size_t>& kernel_dims,
const std::vector<std::size_t>& padding_vals,
Op op) const
{
auto in_s = input.get_shape();
......@@ -283,9 +327,9 @@ struct pooling
// For each spatial dimension, find starting and ending index of pooling kernel
for(std::size_t dim = 2; dim < n_dim; ++dim)
{
auto d_2 = dim - 2;
int start =
static_cast<int>(idx_o[dim] * stride[d_2]) - static_cast<int>(padding[d_2]);
auto d_2 = dim - 2;
int start = static_cast<int>(idx_o[dim] * stride[d_2]) -
static_cast<int>(padding_vals[d_2]);
int end;
// NOLINT
if(count_include_pad and ceil_mode and (mode != pooling_mode::max))
......@@ -297,7 +341,7 @@ struct pooling
// Check if this kernel extends beyond the padding at end of dimension
end = std::min(start + kernel_dims[d_2],
in_lens[dim] + static_cast<int>(padding[d_2]));
in_lens[dim] + static_cast<int>(padding_vals[d_2]));
}
else
{
......@@ -316,11 +360,12 @@ struct pooling
}
shape win_shape{output_shape.type(), win_size};
auto pool_size = win_shape.elements();
double output_val = op.template init<Type>();
// for each element in the window...
shape_for_each(win_shape, [&](auto idx_w) {
shape_for_each(win_shape, [&](const auto& idx_w) {
// the coordinates of this element
auto idx = idx_o;
......@@ -354,30 +399,65 @@ struct pooling
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result{dyn_out.computed_shape};
argument result;
auto input_lens = args[0].get_shape().lens();
std::vector<std::size_t> kernel_dims;
shape output_shape;
// If we have to auto-calculate padding, it will be passed to calc_pooling() as an argument
// instead of the member variable padding.
std::vector<std::size_t> temp_padding(padding);
if(dyn_global)
{
// for dynamic GlobalPooling, there's no padding
kernel_dims.insert(kernel_dims.end(), input_lens.begin() + 2, input_lens.end());
output_shape = dyn_out.computed_shape;
result = dyn_out.computed_shape;
}
else
else if((padding_mode != op::padding_mode_t::default_))
{
// if padding_mode is set, input was a dynamic size. Calculate padded size now.
// kernel_lens is the same as kernel_dims, but prepended with the 2 non-
// spatial dimensions. For size computations, it's used like the weights
// tensor for convolutions.
std::vector<std::size_t> kernel_lens;
kernel_lens.insert(kernel_lens.end(), input_lens.begin(), input_lens.begin() + 2);
kernel_lens.insert(kernel_lens.end(), lengths.begin(), lengths.end());
kernel_dims = this->lengths;
auto type = args[0].get_shape().type();
// dilation not currently supported for pooling, so default to all 1's
temp_padding = calc_dyn_auto_pad(
input_lens, kernel_lens, stride, {1, 1}, bool(padding_mode == op::same_upper));
output_shape = compute_padded_pool_shape(
args[0].get_shape(), shape(type, kernel_dims), temp_padding, stride, {1, 1});
result = argument(output_shape);
}
else // fixed/static input
{
kernel_dims = this->lengths;
output_shape = dyn_out.computed_shape;
result = dyn_out.computed_shape;
}
// Perform the computation and populate result
visit_all(result, args[0])([&](auto output, auto input) {
using type = typename decltype(output)::value_type;
switch(mode)
{
case migraphx::op::pooling_mode::average:
calc_pooling<type>(dyn_out.computed_shape, output, input, kernel_dims, avg_pool{});
calc_pooling<type>(
output_shape, output, input, kernel_dims, temp_padding, avg_pool{});
break;
case migraphx::op::pooling_mode::max:
calc_pooling<type>(dyn_out.computed_shape, output, input, kernel_dims, max_pool{});
calc_pooling<type>(
output_shape, output, input, kernel_dims, temp_padding, max_pool{});
break;
case migraphx::op::pooling_mode::lpnorm:
calc_pooling<type>(
dyn_out.computed_shape, output, input, kernel_dims, lpnorm_pool{lp_order});
output_shape, output, input, kernel_dims, temp_padding, lpnorm_pool{lp_order});
break;
}
});
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -163,7 +163,7 @@ struct reduce_op : op_name<Derived>
auto& self = static_cast<const Derived&>(*this);
auto data_idx = out_idx;
accumulator val = self.init();
shape_for_each(batch_shape, [&](auto b_idx) {
shape_for_each(batch_shape, [&](const auto& b_idx) {
this->tune_dims(tuned_axes, b_idx, data_idx);
accumulator x = input(data_idx.begin(), data_idx.end());
val = self.op()(accumulator{self.input()(x)}, val);
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -70,13 +70,13 @@ struct reverse
argument result{s};
auto lens = s.lens();
visit_all(result, args.front())([&](auto output, auto input) {
shape_for_each(s, [&](const auto& out_idx) {
auto in_idx = out_idx;
shape_for_each(s, [&](const auto& out_idx_v, size_t out_idx) {
auto in_idx = out_idx_v;
for(const auto& axis : axes)
{
in_idx[axis] = lens[axis] - 1 - out_idx[axis];
in_idx[axis] = lens[axis] - 1 - out_idx_v[axis];
}
output[s.index(out_idx)] = input[s.index(in_idx)];
output[out_idx] = input[s.index(in_idx)];
});
});
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -113,10 +113,9 @@ struct roialign
{
std::vector<pos_weight> results(bin_grid_size[0] * bin_grid_size[1] * output_height *
output_width);
shape_for_each(comp_s, [&](auto idx) {
std::array<std::size_t, 2> p = {idx[0], idx[1]};
std::array<std::size_t, 2> i = {idx[2], idx[3]};
auto index = comp_s.index(idx);
shape_for_each(comp_s, [&](const auto& idx_v, size_t index) {
std::array<std::size_t, 2> p = {idx_v[0], idx_v[1]};
std::array<std::size_t, 2> i = {idx_v[2], idx_v[3]};
std::array<float, 2> xy{};
std::array<int64_t, 2> low{};
......@@ -255,7 +254,7 @@ struct roialign
std::vector<std::size_t> comp_lens1 = {channels, out_dims[0], out_dims[1]};
shape comp_s1{migraphx::shape::float_type, comp_lens1};
std::vector<int64_t> vec_index(channels, 0);
shape_for_each(comp_s1, [&](auto idx) {
shape_for_each(comp_s1, [&](const auto& idx) {
auto c = idx[0];
auto ph = idx[1];
auto pw = idx[2];
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......
......@@ -27,19 +27,34 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/normalize_attributes.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/**
* Slice operator that accepts variable axes, starts and ends.
*
* Attributes:
* axes: constant axes to slice over (optional)
* starts: constant slice starting indices (optional)
* ends: constant slice ending indices (optional)
*
* Parameters:
* data: the input tensor to slice (dynamic or static shape)
* input_starts: starting indicies of slice (optional, static shape)
* input_ends: ending indicies of slice (optional, static shape)
* input_axes: axes to slice over (optional, static shape)
*/
struct slice
{
std::vector<int64_t> axes;
std::vector<int64_t> starts;
std::vector<int64_t> ends;
std::vector<int64_t> axes{};
std::vector<int64_t> starts{};
std::vector<int64_t> ends{};
template <class Self, class F>
static auto reflect(Self& self, F f)
......@@ -48,8 +63,8 @@ struct slice
}
/**
* Ensure that attribute vectors axes, starts, and ends are all the same size and values are in
* limits.
* Ensure that attribute vectors axes, starts, and ends are all the same size and values are
* within limits.
*/
value attributes() const
{
......@@ -70,6 +85,90 @@ struct slice
std::string name() const { return "slice"; }
/**
* Computes the slice output shape dimensions for given starts, ends,and axes.
* Templated to also handle tensor views.
* Possibily different type between [in_starts, in_ends] and [in_axes] if in_axes is this
* object's axes attribute. Assumes in_starts and in_ends are normalized; in_axes are valid.
*/
template <class A, class B>
std::vector<std::size_t>
lens_calc(const std::vector<std::size_t>& lengths, A in_starts, A in_ends, B in_axes) const
{
auto new_lens = lengths;
for(std::size_t i = 0; i < in_axes.size(); ++i)
{
auto axis = in_axes[i];
new_lens[axis] = in_ends[i] - in_starts[i];
}
return new_lens;
}
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this, true}.has(1, 3, 4);
auto input_shape = inputs[0];
if(inputs.size() == 1)
{
auto t = input_shape.type();
if(input_shape.dynamic() and std::any_of(axes.begin(), axes.end(), [&](auto axis) {
return not input_shape.dyn_dims()[axis].is_fixed();
}))
{
MIGRAPHX_THROW("SLICE: slicing is not allowed on non-fixed dynamic input axis ");
}
if(input_shape.dynamic())
{
return shape{t,
lens_calc(input_shape.min_lens(), starts, ends, axes),
lens_calc(input_shape.max_lens(), starts, ends, axes),
{}};
}
else
{
return shape{
t, lens_calc(input_shape.lens(), starts, ends, axes), input_shape.strides()};
}
}
else
{
// check that starts, ends, and optionally input_axes are all 1D, have the same
// dimension, and are static
check_shapes{inputs.begin() + 1,
inputs.end(),
std::string("SLICE: inputs (starts, ends, and input_axes)"),
false}
.only_dims(1)
.same_dims();
auto dds = input_shape.to_dynamic().dyn_dims();
if(inputs.size() == 3)
{
if(inputs[1].lens().at(0) != axes.size())
{
MIGRAPHX_THROW("SLICE: inputs starts and ends do not have the same dimension "
"as the axes attribute");
}
std::for_each(axes.cbegin(), axes.cend(), [&](const auto& axis) {
dds.at(axis) = {0, dds.at(axis).max};
});
}
else
{
// if axes is an input, then all the output dimensions could be 0 to the max value
std::transform(dds.begin(), dds.end(), dds.begin(), [](auto dd) {
return shape::dynamic_dimension{0, dd.max};
});
}
return shape{input_shape.type(), dds};
}
}
/**
* Calculates the starting offset for the sliced tensor.
* Used in compute when only data input and all other information are in the attributes.
*
* \param s static input shape
*/
auto compute_offset(const shape& s) const
{
const std::vector<std::size_t>& lens = s.lens();
......@@ -90,80 +189,131 @@ struct slice
offset += starts[axis] * strides[axis];
}
}
return offset;
return offset * s.type_size();
}
shape normalize_compute_shape(std::vector<shape> inputs) const
/**
* Calculates the starting offset for the sliced tensor (for aliasing).
* Used when the starts and/or the axes are inputs.
*
* \param s static input shape
* \param input_starts starting indices of slice
* \param ax_vec axes to slice on
*/
template <class IndView, class Axes>
auto compute_offset(const shape& s, const IndView& input_starts, const Axes& ax_vec) const
{
check_shapes{inputs, *this, true}.has(1);
auto input_shape = inputs[0];
auto t = input_shape.type();
// TODO: When support for dynamic shapes is added to normalize_attributes,
// remove this restriction.
if(input_shape.dynamic() and std::any_of(axes.begin(), axes.end(), [&](auto axis) {
return not input_shape.dyn_dims()[axis].is_fixed();
}))
auto ret = 0;
for(std::size_t i = 0; i < ax_vec.size(); ++i)
{
MIGRAPHX_THROW("SLICE: slicing is not allowed on non-fixed dynamic input axis ");
auto axis = ax_vec[i];
ret += input_starts[i] * s.strides().at(axis);
}
return ret * s.type_size();
}
std::unordered_map<std::string, std::vector<int64_t>>
normalize_inputs(const shape& input_shape,
const std::vector<int64_t>& input_starts,
const std::vector<int64_t>& input_ends) const
{
auto attrs = this->attributes().at("normalize_axes");
return {{"input_starts",
normalize_indices(input_starts,
this->axes,
input_shape,
attrs.at("starts"),
"Slice variable input_starts")},
{"input_ends",
normalize_indices(input_ends,
this->axes,
input_shape,
attrs.at("ends"),
"Slice variable input_ends")}};
}
/**
* Three input version of the normalize_inputs.
* This one also checks that the input_axes are valid.
*/
std::unordered_map<std::string, std::vector<int64_t>>
normalize_inputs(shape input_shape,
const std::vector<int64_t>& input_starts,
const std::vector<int64_t>& input_ends,
const std::vector<int64_t>& input_axes) const
{
auto attrs = this->attributes().at("normalize_axes");
auto norm_axes =
normalize_axes(input_axes, input_shape, attrs.at("axes"), "Slice variable input_axes");
return {{"input_starts",
normalize_indices(input_starts,
norm_axes,
input_shape,
attrs.at("starts"),
"Slice variable input_starts")},
{"input_ends",
normalize_indices(input_ends,
norm_axes,
input_shape,
attrs.at("ends"),
"Slice variable input ends")},
{"input_axes", norm_axes}};
}
// For a static shape, old_lens will be adjusted to a new size
// for those axes that are sliced.
// For dynamic shape, the adjusted old_lens become the new max values,
// while updating the old mins and optimals if possible.
std::vector<std::size_t> new_mins;
std::vector<std::size_t> old_lens;
std::vector<std::size_t> old_strides;
// Doesn't handle optimals
if(input_shape.dynamic())
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
auto input = args[0];
auto input_shape = input.get_shape();
switch(args.size())
{
old_lens = input_shape.max_lens();
new_mins = input_shape.min_lens();
case 1: {
std::size_t offset = compute_offset(input_shape);
return {dyn_out.computed_shape, [=] { return input.data() + offset; }};
}
else
{
old_lens = input_shape.lens();
// For static shape (including during eval step after a dynamic input) the strides are
// indexed into the pre-slice array, so they are larger than the apparent size of the
// resulting shape.
old_strides = input_shape.strides();
case 3: {
shape calc_shape;
std::size_t offset = 0;
visit_all(args[1], args[2])([&](auto input_starts, auto input_ends) {
auto norm_inputs = normalize_inputs(input_shape,
input_starts.template to_vector<int64_t>(),
input_ends.template to_vector<int64_t>());
offset = compute_offset(input_shape, norm_inputs.at("input_starts"), this->axes);
calc_shape = {input_shape.type(),
lens_calc(input_shape.lens(),
norm_inputs.at("input_starts"),
norm_inputs.at("input_ends"),
this->axes),
input_shape.strides()};
});
return {calc_shape, [=] { return input.data() + offset; }};
}
std::vector<std::size_t> new_lens = old_lens;
for(std::size_t i = 0; i < axes.size(); i++)
{
auto axis = axes[i];
size_t sliced_length = ends[i] - starts[i];
// A Numpy indexing convention: a slice size larger than the actual dimension
// is legal and the "ends" value is clipped to the axis size
new_lens[axis] = std::min(new_lens[axis], sliced_length);
if(input_shape.dynamic())
{
// TODO: when non-fixed shape slicing is allowed, this will be different than
// sliced_length, making use of TBD start/end values.
std::size_t sliced_min_length = ends[i] - starts[i];
// if the slice size is smaller than maxes but larger than mins
new_mins[axis] = std::min(sliced_min_length, new_mins[axis]);
}
case 4: {
shape calc_shape;
std::size_t offset = 0;
visit_all(args[1], args[2], args[3])(
[&](auto input_starts, auto input_ends, auto input_axes) {
auto norm_inputs = normalize_inputs(input_shape,
input_starts.template to_vector<int64_t>(),
input_ends.template to_vector<int64_t>(),
input_axes.template to_vector<int64_t>());
offset = compute_offset(
input_shape, norm_inputs.at("input_starts"), norm_inputs.at("input_axes"));
calc_shape = shape{input_shape.type(),
lens_calc(input_shape.lens(),
norm_inputs.at("input_starts"),
norm_inputs.at("input_ends"),
norm_inputs.at("input_axes")),
input_shape.strides()};
});
return {calc_shape, [=] { return input.data() + offset; }};
}
if(input_shape.dynamic())
{
return shape{t, new_mins, new_lens, {}};
default: {
// Should never get here; covering in case some code change occurs
MIGRAPHX_THROW("SLICE: invalid number of inputs");
}
else
{
return shape{t, new_lens, old_strides};
}
}
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
auto input = args[0];
auto offset = compute_offset(input.get_shape()) * dyn_out.computed_shape.type_size();
return {dyn_out.computed_shape, [=] { return input.data() + offset; }};
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
};
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -62,6 +62,14 @@ shape compute_padded_shape(const shape& input,
const std::vector<std::size_t>& stride,
const std::vector<std::size_t>& dilation);
// Used for dynamic auto padding of pooling operators where padding needs to be computed at
// evaulation time.
shape compute_padded_pool_shape(const shape& input,
const shape& kernel,
const std::vector<std::size_t>& padding,
const std::vector<std::size_t>& stride,
const std::vector<std::size_t>& dilation);
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -205,7 +205,7 @@ void transform(Range1&& r1, Range2&& r2, Iterator it, F f)
}
template <class Range>
auto reverse(Range& r)
auto reverse(Range&& r)
{
return range(std::make_reverse_iterator(r.end()), std::make_reverse_iterator(r.begin()));
}
......
......@@ -263,7 +263,7 @@ struct MIGRAPHX_EXPORT shape
/// no padding
bool packed() const;
/// Returns true is the shape has been transposed. That is the strides are not in descending
/// Returns true if the shape has been transposed. That is the strides are not in descending
/// order
bool transposed() const;
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -37,11 +37,11 @@ inline namespace MIGRAPHX_INLINE_NS {
template <class F>
void shape_for_each(const migraphx::shape& s, F f)
{
// Ensure calls to f use const ref to vector
auto call = [&f](const std::vector<std::size_t>& i) { f(i); };
std::vector<std::size_t> indices(s.lens().size());
const auto& index_const_ref = indices;
shape ss{s.type(), s.lens()};
for(std::size_t i = 0; i < ss.elements(); i++)
size_t max = ss.elements();
for(std::size_t i = 0; i < max; i++)
{
std::transform(ss.strides().begin(),
ss.strides().end(),
......@@ -51,9 +51,13 @@ void shape_for_each(const migraphx::shape& s, F f)
assert(len > 0 and stride > 0);
return (i / stride) % len;
});
call(indices);
if constexpr(std::is_invocable<F, decltype(index_const_ref), decltype(i)>{})
f(index_const_ref, i);
else
f(index_const_ref);
}
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -38,6 +38,7 @@ struct module;
*/
struct MIGRAPHX_EXPORT simplify_reshapes
{
size_t depth = 4;
std::string name() const { return "simplify_reshapes"; }
void apply(module& m) const;
};
......
......@@ -86,7 +86,7 @@ inline std::string join_strings(Strings strings, const std::string& delim)
inline std::vector<std::string> split_string(const std::string& s, char delim)
{
std::vector<std::string> elems;
std::stringstream ss(s + ' ');
std::stringstream ss(s + delim);
std::string item;
while(std::getline(ss, item, delim))
{
......@@ -149,6 +149,10 @@ interpolate_string(const std::string& input, F f, std::string start = "${", std:
result.append(it, next_start);
if(next_start == input.end())
break;
if(next_end == input.end())
{
throw std::runtime_error("Unbalanced brackets");
}
auto r = f(next_start + start.size(), next_end);
result.append(r.begin(), r.end());
it = next_end + end.size();
......
......@@ -23,9 +23,9 @@
*/
#include <migraphx/memory_coloring.hpp>
#include <migraphx/module.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/algorithm.hpp>
#include <migraphx/ranges.hpp>
......@@ -382,7 +382,8 @@ void memory_coloring::apply(module& m) const
auto s = ins->get_shape();
std::size_t offset = seg.first * alignment;
assert(offset < n);
m.replace_instruction(ins, op::load{s, offset}, mem);
m.replace_instruction(
ins, make_op("load", {{"shape", to_value(s)}, {"offset", offset}}), mem);
}
// Replace zero allocation
......@@ -391,7 +392,8 @@ void memory_coloring::apply(module& m) const
if(ins->name() != allocation_op)
continue;
assert(ins->get_shape().bytes() == 0);
m.replace_instruction(ins, op::load{ins->get_shape(), 0}, mem);
m.replace_instruction(
ins, make_op("load", {{"shape", to_value(ins->get_shape())}, {"offset", 0}}), mem);
}
// Remove scratch parameter if its not used
......
......@@ -26,7 +26,7 @@
#include <migraphx/normalize_attributes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/op/common.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -49,6 +49,10 @@ auto tune_attribute(const std::vector<int64_t>& vec,
Message m)
{
std::vector<int64_t> result(vec);
if(result.empty())
{
return result;
};
int64_t n_rank = input_shape.ndim();
std::vector<op::normalize_attribute> vec_attrs = val.to_vector<op::normalize_attribute>();
if(contains(vec_attrs, op::normalize_attribute::use_output))
......@@ -188,20 +192,27 @@ bool normalize_attributes(operation& op, const shape& input_shape)
auto val = op.to_value();
if(attrs.contains("normalize_padding"))
{
auto padding = val.at(attrs.at("normalize_padding").to<std::string>());
auto padding_size = padding.size();
auto padding_start = 2;
if(padding_size == 2 * (input_shape.ndim() - padding_start))
tuned = true;
else if(padding_size != (input_shape.ndim() - padding_start))
MIGRAPHX_THROW("inconsistent padding size");
else
bool use_auto_padding =
(val.contains("padding_mode") and
(val.at("padding_mode").to<int>() != migraphx::op::padding_mode_t::default_));
if(not use_auto_padding)
{
auto result = tune_pad_attribute(padding);
val["padding"] = result;
op.from_value(val);
tuned = true;
auto padding = val.at(attrs.at("normalize_padding").to<std::string>());
auto padding_size = padding.size();
auto padding_start = 2;
if(padding_size == 2 * (input_shape.ndim() - padding_start))
tuned = true;
else if(padding_size != (input_shape.ndim() - padding_start))
{
MIGRAPHX_THROW("normalize_attributes: inconsistent padding vector size ");
}
else
{
auto result = tune_pad_attribute(padding);
val["padding"] = result;
op.from_value(val);
tuned = true;
}
}
}
if(not attrs.contains("normalize_axes"))
......@@ -251,5 +262,22 @@ bool normalize_attributes(operation& op, const shape& input_shape)
return tuned;
}
std::vector<int64_t> normalize_axes(const std::vector<int64_t>& axes,
const shape& input_shape,
const value& attr_val,
const std::string& prefix)
{
return tune_attribute(axes, {}, attr_val, input_shape, [&] { return prefix; });
}
std::vector<int64_t> normalize_indices(const std::vector<int64_t>& indices,
const std::vector<int64_t>& axes,
const shape& input_shape,
const value& attr_val,
const std::string& prefix)
{
return tune_attribute(indices, axes, attr_val, input_shape, [&] { return prefix; });
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -151,26 +151,6 @@ struct parse_pooling : op_parser<parse_pooling>
kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
}
if(contains(info.attributes, "auto_pad"))
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW(
"PARSE_POOLING: Auto padding pooling with dynamic input shape not supported");
}
else
{
values["padding"].clear();
// return paddings could be empty, then setting to 0 for no padding
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
{1, 1},
in_shape.lens(),
paddings);
}
}
if(paddings.size() != 2 * kdims)
{
paddings.resize(kdims * 2);
......@@ -192,6 +172,36 @@ struct parse_pooling : op_parser<parse_pooling>
// used to calculate the supposed output shape
std::vector<int64_t> orig_padding = paddings;
// TODO: add parsing for dilations
if(contains(info.attributes, "auto_pad") and
to_upper(info.attributes["auto_pad"].s()) != "NOTSET")
{
auto auto_pad = to_upper(info.attributes["auto_pad"].s());
// don't use the given padding sizes, if any
// values["padding"].clear();
if(in_shape.dynamic())
{
// set padding_mode to trigger auto padding at runtime
bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
values["padding_mode"] = is_same_upper ? to_value(op::padding_mode_t::same_upper)
: to_value(op::padding_mode_t::same_lower);
}
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
std::vector<size_t>(in_shape.ndim() - 2, 1),
in_shape.lens(),
paddings);
values["padding"] = paddings;
// default padding_mode indicates that padding sizes are not calculated dynamically
values["padding_mode"] = migraphx::op::padding_mode_t::default_;
}
}
std::vector<int64_t> slice_start;
std::vector<int64_t> slice_end;
tune_padding_size(values, paddings, count_include_pad, slice_start);
......@@ -208,8 +218,9 @@ struct parse_pooling : op_parser<parse_pooling>
orig_padding.insert(orig_padding.begin(), 2, 0);
op::pad pad{orig_padding, 0.0f};
shape padded_shape = pad.compute_shape({l0->get_shape()});
auto out_lens = make_op("pooling", values).compute_shape({padded_shape}).lens();
// make an op just to get its output shape
auto out_lens = make_op("pooling", values).compute_shape({padded_shape}).lens();
// compute slice_end information
slice_end.resize(slice_start.size());
std::transform(out_lens.begin() + 2,
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -97,22 +97,19 @@ const auto& get_original_idx_op(const std::string& mode)
static std::vector<int>
calc_neighbor_points(const std::vector<std::vector<std::vector<std::size_t>>>& vvv_ind,
int i_dim,
const std::vector<std::vector<std::size_t>>& vec_dims,
std::vector<std::vector<std::size_t>> vec_dims,
const shape& in_s)
{
if(i_dim == vvv_ind.size())
{
std::vector<int> vec_ind;
vec_ind.resize(vec_dims.size());
std::vector<int> vec_ind(vec_dims.size());
std::transform(vec_dims.begin(), vec_dims.end(), vec_ind.begin(), [&](auto idx) {
return static_cast<int>(in_s.index(idx));
});
return vec_ind;
}
const auto& vv_ind = vvv_ind[i_dim];
const auto& vv_lo = vv_ind.at(0);
const auto& vv_lo = vvv_ind[i_dim][0];
std::vector<std::vector<std::size_t>> vec_dims1;
for(std::size_t start = 0; start < vec_dims.size(); start += vv_lo.size())
{
......@@ -126,8 +123,8 @@ calc_neighbor_points(const std::vector<std::vector<std::vector<std::size_t>>>& v
});
}
const auto& vv_hi = vv_ind.at(1);
for(std::size_t start = 0; start < vec_dims.size(); start += vv_lo.size())
const auto& vv_hi = vvv_ind[i_dim][1];
for(std::size_t start = 0; start < vec_dims.size(); start += vv_hi.size())
{
std::transform(vv_hi.begin(),
vv_hi.end(),
......@@ -138,8 +135,8 @@ calc_neighbor_points(const std::vector<std::vector<std::vector<std::size_t>>>& v
return dim;
});
}
return calc_neighbor_points(vvv_ind, i_dim + 1, vec_dims1, in_s);
vec_dims.clear();
return calc_neighbor_points(vvv_ind, i_dim + 1, std::move(vec_dims1), in_s);
}
static std::string get_coord_trans_mode(const onnx_parser::attribute_map& attr)
......@@ -240,7 +237,7 @@ struct parse_resize : op_parser<parse_resize>
auto arg_out_s = arg->eval();
check_arg_empty(arg_out_s,
"PARSE_" + opd.op_name + ": dynamic output size is not supported!");
arg_out_s.visit([&](auto ol) { out_lens.assign(ol.begin(), ol.end()); });
arg_out_s.visit([&](const auto& ol) { out_lens.assign(ol.begin(), ol.end()); });
if(out_lens.size() != in_lens.size())
{
......@@ -267,7 +264,7 @@ struct parse_resize : op_parser<parse_resize>
"PARSE_" + opd.op_name +
": dynamic input scale is not supported!");
arg_scale.visit([&](auto v) { vec_scale.assign(v.begin(), v.end()); });
arg_scale.visit([&](const auto& v) { vec_scale.assign(v.begin(), v.end()); });
if(in_lens.size() != vec_scale.size())
{
MIGRAPHX_THROW("PARSE_" + opd.op_name +
......@@ -300,15 +297,15 @@ struct parse_resize : op_parser<parse_resize>
// map out_idx to in_idx
auto nearest_op = get_nearest_op(nearest_mode);
shape_for_each(out_s, [&](auto idx) {
auto in_idx = idx;
shape_for_each(out_s, [&](const auto& out_idx_v, size_t out_idx) {
std::vector<size_t> in_idx(out_idx_v.size());
for(auto ii = 0; ii < in_lens.size(); ++ii)
{
auto idx_val = idx_op(in_lens[ii], out_lens[ii], idx[ii], vec_scale[ii]);
auto idx_val = idx_op(in_lens[ii], out_lens[ii], out_idx_v[ii], vec_scale[ii]);
in_idx[ii] = nearest_op(in_lens[ii], idx_val);
}
ind[out_s.index(idx)] = static_cast<int64_t>(in_s.index(in_idx));
ind[out_idx] = static_cast<int64_t>(in_s.index(in_idx));
});
shape ind_s{shape::int32_type, out_lens};
......@@ -323,24 +320,21 @@ struct parse_resize : op_parser<parse_resize>
// get the number of dimensions
std::size_t n_dim = out_lens.size();
std::vector<std::vector<std::size_t>> vv_ind(2, std::vector<std::size_t>(out_elements));
std::vector<std::vector<std::vector<std::size_t>>> vvv_ind(n_dim, vv_ind);
auto vvv_ind = std::vector(n_dim, std::vector(2, std::vector<size_t>(out_elements)));
std::vector<std::vector<float>> delta(n_dim, std::vector<float>(out_elements));
shape_for_each(out_s, [&](auto idx) {
auto in_idx = idx;
auto out_idx = out_s.index(idx);
shape_for_each(out_s, [&](const auto& out_idx_v, size_t out_idx) {
for(auto ii = 0; ii < in_lens.size(); ++ii)
{
auto idx_val = idx_op(in_lens[ii], out_lens[ii], idx[ii], vec_scale[ii]);
auto idx_val = idx_op(in_lens[ii], out_lens[ii], out_idx_v[ii], vec_scale[ii]);
vvv_ind[ii][0][out_idx] = nearest_floor(in_lens[ii], idx_val);
vvv_ind[ii][1][out_idx] = nearest_ceil(in_lens[ii], idx_val);
delta[ii][out_idx] = idx_val - vvv_ind[ii][0][out_idx];
}
});
std::vector<std::vector<std::size_t>> vec_dims(out_elements);
auto ind = calc_neighbor_points(vvv_ind, 0, vec_dims, in_s);
auto ind = calc_neighbor_points(
vvv_ind, 0, std::vector<std::vector<std::size_t>>(out_elements), in_s);
auto ind_lens = out_lens;
ind_lens[0] *= (std::size_t{1} << n_dim);
shape ind_s{shape::int32_type, ind_lens};
......
......@@ -34,16 +34,65 @@ namespace onnx {
struct parse_slice : op_parser<parse_slice>
{
std::vector<op_desc> operators() const { return {{"Slice"}}; }
struct slice_desc
{
op::slice op;
std::vector<instruction_ref> op_args;
std::vector<int64_t> steps;
std::vector<int64_t> raxes;
void always_insert(instruction_ref arg) { op_args.insert(op_args.begin(), arg); }
std::vector<int64_t> insert(instruction_ref arg)
{
std::vector<int64_t> result;
migraphx::argument arg_value = arg->eval();
if(arg_value.empty())
{
op_args.insert(op_args.begin(), arg);
}
else
{
arg_value.visit([&](auto s) { result.assign(s.begin(), s.end()); });
}
return result;
}
};
instruction_ref parse(const op_desc& /*opd*/,
const onnx_parser& parser,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
op::slice op;
auto sd = construct_slice_desc(parser, info, args);
auto ins = info.add_instruction(sd.op, sd.op_args);
if(not sd.raxes.empty())
{
ins = info.add_instruction(make_op("reverse", {{"axes", sd.raxes}}), ins);
}
// If any steps are other than default 1, add a "steps" op
if(std::any_of(sd.steps.begin(), sd.steps.end(), [](auto s) { return std::abs(s) != 1; }))
{
std::vector<int64_t> nsteps;
std::transform(sd.steps.begin(),
sd.steps.end(),
std::back_inserter(nsteps),
[](auto s) { return std::abs(s); });
return ins = info.add_instruction(
make_op("step", {{"axes", sd.op.axes}, {"steps", nsteps}}), ins);
}
else
return ins;
}
std::vector<int64_t> steps;
slice_desc construct_slice_desc(const onnx_parser& parser,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
{
slice_desc sd;
// slice can have up to 5 inputs, we first check the 5th one
// to decide whether MIGRAPHX can handle this slice.
......@@ -51,89 +100,73 @@ struct parse_slice : op_parser<parse_slice>
{
migraphx::argument step_arg = args.back()->eval();
check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice");
step_arg.visit([&](auto s) { steps.assign(s.begin(), s.end()); });
step_arg.visit([&](auto s) { sd.steps.assign(s.begin(), s.end()); });
}
if(args.size() >= 4)
{
migraphx::argument axes_arg = args.at(3)->eval();
check_arg_empty(axes_arg, "PARSE_SLICE: cannot handle variable axes for slice");
axes_arg.visit([&](auto s) { op.axes.assign(s.begin(), s.end()); });
sd.op.axes = sd.insert(args.at(3));
}
else if(contains(info.attributes, "axes"))
{
literal s = parser.parse_value(info.attributes.at("axes"));
s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.axes)); });
}
if(args.size() >= 3)
{
migraphx::argument end_arg = args.at(2)->eval();
check_arg_empty(end_arg, "PARSE_SLICE: cannot handle variable ends for slice");
end_arg.visit([&](auto s) { op.ends.assign(s.begin(), s.end()); });
sd.op.ends = sd.insert(args.at(2));
}
else if(contains(info.attributes, "ends"))
{
literal s = parser.parse_value(info.attributes.at("ends"));
s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.ends)); });
}
if(args.size() >= 2)
{
migraphx::argument start_arg = args.at(1)->eval();
check_arg_empty(start_arg, "PARSE_SLICE: cannot handle variable starts for slice");
start_arg.visit([&](auto s) { op.starts.assign(s.begin(), s.end()); });
sd.op.starts = sd.insert(args.at(1));
}
else if(contains(info.attributes, "starts"))
{
literal s = parser.parse_value(info.attributes.at("starts"));
s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.starts)); });
}
// data input argument
sd.always_insert(args.at(0));
// If axes arg is not given, the default is all of them.
if(op.axes.empty())
if(sd.op.axes.empty() and sd.op_args.size() < 3)
{
std::vector<int64_t> axes(args[0]->get_shape().ndim());
std::iota(axes.begin(), axes.end(), int64_t{0});
op.axes = axes;
sd.op.axes = axes;
}
std::vector<int64_t> raxes;
if(not sd.steps.empty())
{
if(sd.op.starts.empty() or sd.op.ends.empty())
MIGRAPHX_THROW("PARSE_SLICE: steps and variable starts and ends is not supported");
if(sd.op.axes.empty())
MIGRAPHX_THROW("PARSE_SLICE: steps and variable axes is not supported");
}
assert(steps.empty() or steps.size() == op.axes.size());
assert(op.axes.size() == op.starts.size());
assert(op.axes.size() == op.ends.size());
assert(sd.steps.empty() or sd.steps.size() == sd.op.axes.size());
// If any axes have negative step, prepare to add a "reverse" op
for(auto i : range(steps.size()))
for(auto i : range(sd.steps.size()))
{
if(steps[i] >= 0)
if(sd.steps[i] >= 0)
continue;
op.starts[i] += 1;
if(op.starts[i] == 0)
op.starts[i] = INT_MAX;
op.ends[i] += 1;
raxes.push_back(op.axes[i]);
std::swap(op.starts[i], op.ends[i]);
}
auto ins = info.add_instruction(op, args[0]);
if(not raxes.empty())
{
ins = info.add_instruction(make_op("reverse", {{"axes", raxes}}), ins);
sd.op.starts[i] += 1;
if(sd.op.starts[i] == 0)
sd.op.starts[i] = INT_MAX;
sd.op.ends[i] += 1;
sd.raxes.push_back(sd.op.axes[i]);
std::swap(sd.op.starts[i], sd.op.ends[i]);
}
// If any steps are other than default 1, add a "steps" op
if(std::any_of(steps.begin(), steps.end(), [](auto s) { return std::abs(s) != 1; }))
{
std::vector<int64_t> nsteps;
std::transform(steps.begin(), steps.end(), std::back_inserter(nsteps), [](auto s) {
return std::abs(s);
});
return ins = info.add_instruction(
make_op("step", {{"axes", op.axes}, {"steps", nsteps}}), ins);
}
else
return ins;
return sd;
}
};
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment