Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
0c5e5fc5
Commit
0c5e5fc5
authored
Sep 13, 2022
by
turneram
Browse files
Merge branch 'ck-elementwise2' into ck-poc
parents
65b6a759
0e237605
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
215 additions
and
67 deletions
+215
-67
src/targets/gpu/jit/ck_elementwise.cpp
src/targets/gpu/jit/ck_elementwise.cpp
+131
-8
src/targets/gpu/kernels/include/migraphx/kernels/ck_elementwise.hpp
...s/gpu/kernels/include/migraphx/kernels/ck_elementwise.hpp
+78
-55
test/verify/0ck_elementwise_half_test.cpp
test/verify/0ck_elementwise_half_test.cpp
+6
-4
No files found.
src/targets/gpu/jit/ck_elementwise.cpp
View file @
0c5e5fc5
...
...
@@ -25,6 +25,8 @@
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/ranges.hpp>
...
...
@@ -39,6 +41,113 @@ namespace migraphx {
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
using
namespace
migraphx
::
gpu
::
gen
;
// NOLINT
// static const char* const ck_elementwise_kernel = R"__migraphx__(
// //#include <migraphx/kernels/ck_elementwise.hpp>
// #include <migraphx/kernels/ops.hpp>
// #include <migraphx/kernels/integral_constant.hpp>
// #include <migraphx/kernels/generic_constant.hpp>
// #include <args.hpp>
// #include <migraphx/kernels/index.hpp>
// #include <migraphx/kernels/algorithm.hpp>
// #include <migraphx/kernels/integral_constant.hpp>
// #include <migraphx/kernels/tensor_view.hpp>
// #include "ck/device_utility/device_prop.hpp"
// #include "ck/device_utility/kernel_launch.hpp"
// #include "ck/tensor_operation/gpu/device/device_base.hpp"
// #include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
// #include "ck/tensor_operation/gpu/grid/gridwise_binary_elementwise_1d.hpp"
// namespace migraphx {
// using ADataType = float;
// using BDataType = float;
// using CDataType = float;
// using ElementwiseFunctor = float;
// static constexpr auto I0 = ck::Number<0>{};
// template <class L, class S, class N>
// constexpr auto MakeDescriptor_M(const L& lengths, const S& strides, const N& ndim)
// {
// auto gridSize = 72;
// auto blockSize = 1024;
// //constexpr auto ndim = 1;
// // auto idx = make_index();
// auto tupleOfShape = generate_tuple([&](auto I) { return static_cast<ck::index_t>(lengths[I]);
// },
// ck::Number<ndim>{});
// auto tupleOfStride = generate_tuple(
// [&](auto I) { return static_cast<ck::index_t>(strides[I]); }, ck::Number<1>{});
// const auto desc = make_naive_tensor_descriptor(tupleOfShape, tupleOfStride);
// auto desc_m = desc;
// // merge nd to 1d desc - [s0 * s1 * ...]
// if constexpr(ndim > 1)
// {
// desc_m = transform_tensor_descriptor(
// desc,
// make_tuple(make_merge_transform(tupleOfShape)),
// make_tuple(generate_sequence_v2([&](auto I) { return I; }, ck::Number<ndim>{})),
// make_tuple(ck::Sequence<0>{}));
// }
// const auto M = desc_m.GetLength(I0);
// const ck::index_t loop_step = /* idx.nglobal(); // */ gridSize * blockSize /* * MPerThread
// */; const auto pad = ck::math::integer_least_multiple(M, loop_step) - M; const
// auto desc_m_pad =
// transform_tensor_descriptor(desc_m,
// make_tuple(ck::make_right_pad_transform(M, pad)),
// make_tuple(ck::Sequence<0>{}),
// make_tuple(ck::Sequence<0>{}));
// return desc_m_pad;
// }
// struct Add
// {
// template <typename Y, typename X0, typename X1>
// __device__ constexpr void operator()(Y& y, const X0& x0, const X1& x1) const
// {
// y = x0 + x1;
// };
// };
// extern "C" {
// __global__ void ck_elementwise_kernel(void* a_p, void* b_p, void* c_p)
// {
// make_tensors()(a_p, b_p, c_p)([](auto a_t, auto b_t, auto c_t) {
// constexpr auto lengths = get_shape_c<decltype(a_t)>{}.lens;
// constexpr auto strides = get_shape_c<decltype(a_t)>{}.strides;
// constexpr auto ndim = _c<decltype(lengths.size()){}>[1];
// constexpr auto a_desc = MakeDescriptor_M(lengths, strides, ndim);
// using AGridDesc_M = decltype(a_desc);
// using GridwiseBinEltwise = ck::GridwiseBinaryElementwise_1D<ADataType,
// BDataType,
// CDataType,
// CDataType,
// AGridDesc_M,
// AGridDesc_M,
// AGridDesc_M,
// Add,
// 1,
// 1,
// 1,
// 1>;
// auto op = Add{};
// GridwiseBinEltwise::Run(a_t.data(), b_t.data(), c_t.data(), a_desc, a_desc, a_desc, op);
// });
// }
// }
// } // namespace migraphx
// )__migraphx__";
// NOLINTNEXTLINE
static
const
char
*
const
ck_elementwise_kernel
=
R"__migraphx__(
#include <migraphx/kernels/ck_elementwise.hpp>
...
...
@@ -51,10 +160,10 @@ namespace migraphx {
extern "C" {
__global__ void ck_elementwise_kernel(void* a_p, void* b_p, void* c_p)
__global__ void ck_elementwise_kernel(void* a_p, void* b_p, void* c_p)
{
make_tensors()(a_p, b_p, c_p)([](auto&&... xs) {
ck_elementwise(xs...);
make_tensors()(a_p, b_p, c_p)([](auto&&... xs) {
ck_elementwise(xs...);
});
}
...
...
@@ -68,16 +177,30 @@ struct ck_elementwise_compiler : compiler<ck_elementwise_compiler>
{
std
::
vector
<
std
::
string
>
names
()
const
{
return
{
"ck_elementwise"
};
}
static
std
::
size_t
oversubscribe_if
(
bool
b
)
{
if
(
b
)
return
256
;
else
return
1
;
}
operation
compile_op
(
context
&
ctx
,
const
std
::
vector
<
shape
>&
inputs
,
const
value
&
v
)
const
{
hip_compile_options
options
;
auto
out_s
=
inputs
.
back
();
options
.
set_launch_params
(
v
,
compute_global_for
(
ctx
,
out_s
.
elements
()));
options
.
inputs
=
inputs
;
options
.
output
=
out_s
;
options
.
output
=
inputs
.
back
();
options
.
virtual_inputs
=
reduce_dims
(
inputs
);
options
.
params
=
"-Wno-float-equal"
;
auto
axis
=
find_fast_axis
(
options
.
virtual_inputs
);
auto
vec
=
vectorize
::
elements
(
axis
,
options
.
virtual_inputs
);
auto
preloads
=
preload
::
broadcasts
(
axis
,
options
.
virtual_inputs
);
options
.
kernel_name
=
"ck_elementwise_kernel"
;
options
.
virtual_inputs
=
inputs
;
options
.
set_launch_params
(
v
,
compute_global_for
(
ctx
,
options
.
output
.
elements
()
/
(
vec
.
size
*
4
),
oversubscribe_if
(
not
preloads
.
is_preloading
())));
return
compile_hip_code_object
(
ck_elementwise_kernel
,
options
);
}
...
...
src/targets/gpu/kernels/include/migraphx/kernels/ck_elementwise.hpp
View file @
0c5e5fc5
...
...
@@ -37,46 +37,57 @@
namespace
migraphx
{
using
ADataType
=
floa
t
;
using
BDataType
=
floa
t
;
using
CDataType
=
floa
t
;
using
ElementwiseFunctor
=
floa
t
;
using
ADataType
=
ck
::
half_
t
;
using
BDataType
=
ck
::
half_
t
;
using
CDataType
=
ck
::
half_
t
;
using
ElementwiseFunctor
=
ck
::
half_
t
;
static
constexpr
auto
I0
=
ck
::
Number
<
0
>
{};
template
<
c
lass
L
,
class
S
,
class
N
>
constexpr
auto
MakeDescriptor_M
(
const
L
&
lengths
,
const
S
&
strides
,
const
N
&
/* ndim */
)
template
<
c
k
::
index_t
ndim
>
struct
CKBinaryElementwise
{
auto
gridSize
=
72
;
auto
blockSize
=
1024
;
constexpr
auto
ndim
=
1
;
// auto idx = make_index();
auto
tupleOfShape
=
generate_tuple
([
&
](
auto
I
)
{
return
static_cast
<
ck
::
index_t
>
(
lengths
[
I
]);
},
ck
::
Number
<
ndim
>
{});
auto
tupleOfStride
=
generate_tuple
(
[
&
](
auto
I
)
{
return
static_cast
<
ck
::
index_t
>
(
strides
[
I
]);
},
ck
::
Number
<
1
>
{});
const
auto
desc
=
make_naive_tensor_descriptor
(
tupleOfShape
,
tupleOfStride
);
auto
desc_m
=
desc
;
// merge nd to 1d desc - [s0 * s1 * ...]
if
constexpr
(
ndim
>
1
)
template
<
class
Desc_M
>
constexpr
auto
PadDescriptor_M_1d
(
Desc_M
desc_m
)
{
desc_m
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_merge_transform
(
tupleOfShape
)),
make_tuple
(
generate_sequence_v2
([
&
](
auto
I
)
{
return
I
;
},
ck
::
Number
<
ndim
>
{})),
make_tuple
(
ck
::
Sequence
<
0
>
{}));
auto
gridSize
=
72
;
auto
blockSize
=
1024
;
auto
MPerThread
=
8
;
const
auto
M
=
desc_m
.
GetLength
(
I0
);
const
ck
::
index_t
loop_step
=
gridSize
*
blockSize
*
MPerThread
;
const
auto
pad
=
ck
::
math
::
integer_least_multiple
(
M
,
loop_step
)
-
M
;
const
auto
desc_m_pad
=
transform_tensor_descriptor
(
desc_m
,
make_tuple
(
ck
::
make_right_pad_transform
(
M
,
pad
)),
make_tuple
(
ck
::
Sequence
<
0
>
{}),
make_tuple
(
ck
::
Sequence
<
0
>
{}));
return
desc_m_pad
;
}
const
auto
M
=
desc_m
.
GetLength
(
I0
);
const
ck
::
index_t
loop_step
=
/* idx.nglobal(); // */
gridSize
*
blockSize
/* * MPerThread */
;
const
auto
pad
=
ck
::
math
::
integer_least_multiple
(
M
,
loop_step
)
-
M
;
const
auto
desc_m_pad
=
transform_tensor_descriptor
(
desc_m
,
make_tuple
(
ck
::
make_right_pad_transform
(
M
,
pad
)),
make_tuple
(
ck
::
Sequence
<
0
>
{}),
make_tuple
(
ck
::
Sequence
<
0
>
{}));
return
desc_m_pad
;
}
template
<
class
L
,
class
S
>
constexpr
auto
MakeDescriptor_M
(
const
L
&
lengths
,
const
S
&
strides
)
{
auto
tupleOfShape
=
generate_tuple
(
[
&
](
auto
I
)
{
return
static_cast
<
ck
::
index_t
>
(
lengths
[
I
]);
},
ck
::
Number
<
ndim
>
{});
auto
tupleOfStride
=
generate_tuple
(
[
&
](
auto
I
)
{
return
static_cast
<
ck
::
index_t
>
(
strides
[
I
]);
},
ck
::
Number
<
ndim
>
{});
const
auto
desc
=
make_naive_tensor_descriptor
(
tupleOfShape
,
tupleOfStride
);
// merge nd to 1d desc - [s0 * s1 * ...]
if
constexpr
(
ndim
>
1
)
{
const
auto
desc_m
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_merge_transform
(
tupleOfShape
)),
make_tuple
(
generate_sequence_v2
([
&
](
auto
I
)
{
return
I
;
},
ck
::
Number
<
ndim
>
{})),
make_tuple
(
ck
::
Sequence
<
0
>
{}));
return
PadDescriptor_M_1d
(
desc_m
);
}
else
{
return
PadDescriptor_M_1d
(
desc
);
}
}
};
struct
Add
{
...
...
@@ -90,29 +101,41 @@ struct Add
template
<
class
T
,
class
U
,
class
V
>
__device__
void
ck_elementwise
(
const
T
&
a_t
,
const
U
&
b_t
,
const
V
&
c_t
)
{
auto
idx
=
make_index
();
if
(
idx
.
global
==
0
)
{
constexpr
auto
lengths
=
get_shape_c
<
T
>
{}.
lens
;
constexpr
auto
strides
=
get_shape_c
<
T
>
{}.
strides
;
constexpr
auto
a_desc
=
MakeDescriptor_M
(
lengths
,
strides
,
1
);
constexpr
auto
a_lens
=
get_shape_c
<
T
>
{}.
lens
;
constexpr
auto
a_strides
=
get_shape_c
<
T
>
{}.
strides
;
constexpr
ck
::
index_t
a_ndim
=
decltype
(
a_lens
.
size
()){};
auto
a_bin_op
=
CKBinaryElementwise
<
a_ndim
>
{};
constexpr
auto
a_desc
=
a_bin_op
.
MakeDescriptor_M
(
a_lens
,
a_strides
);
using
AGridDesc_M
=
decltype
(
a_desc
);
using
GridwiseBinEltwise
=
ck
::
GridwiseBinaryElementwise_1D
<
ADataType
,
BDataType
,
CDataType
,
CDataType
,
AGridDesc_M
,
AGridDesc_M
,
AGridDesc_M
,
Add
,
1
,
1
,
1
,
1
>
;
auto
op
=
Add
{};
GridwiseBinEltwise
::
Run
(
a_t
.
data
(),
b_t
.
data
(),
c_t
.
data
(),
a_desc
,
a_desc
,
a_desc
,
op
);
}
constexpr
auto
b_lens
=
get_shape_c
<
U
>
{}.
lens
;
constexpr
auto
b_strides
=
get_shape_c
<
U
>
{}.
strides
;
constexpr
ck
::
index_t
b_ndim
=
decltype
(
b_lens
.
size
()){};
auto
b_bin_op
=
CKBinaryElementwise
<
b_ndim
>
{};
constexpr
auto
b_desc
=
b_bin_op
.
MakeDescriptor_M
(
b_lens
,
b_strides
);
constexpr
auto
c_lens
=
get_shape_c
<
V
>
{}.
lens
;
constexpr
auto
c_strides
=
get_shape_c
<
V
>
{}.
strides
;
constexpr
ck
::
index_t
c_ndim
=
decltype
(
c_lens
.
size
()){};
auto
c_bin_op
=
CKBinaryElementwise
<
c_ndim
>
{};
constexpr
auto
c_desc
=
c_bin_op
.
MakeDescriptor_M
(
c_lens
,
c_strides
);
using
AGridDesc_M
=
decltype
(
a_desc
);
using
BGridDesc_M
=
decltype
(
b_desc
);
using
CGridDesc_M
=
decltype
(
c_desc
);
using
GridwiseBinEltwise
=
ck
::
GridwiseBinaryElementwise_1D
<
ADataType
,
BDataType
,
CDataType
,
CDataType
,
AGridDesc_M
,
BGridDesc_M
,
CGridDesc_M
,
Add
,
8
,
8
,
8
,
8
>
;
auto
op
=
Add
{};
GridwiseBinEltwise
::
Run
(
a_t
.
data
(),
b_t
.
data
(),
c_t
.
data
(),
a_desc
,
b_desc
,
c_desc
,
op
);
}
}
// namespace migraphx
...
...
test/verify/0ck_
gemm
_test.cpp
→
test/verify/0ck_
elementwise_half
_test.cpp
View file @
0c5e5fc5
...
...
@@ -27,18 +27,20 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
ck_
gemm
:
verify_program
<
ck_
gemm
>
struct
ck_
elementwise_half
:
verify_program
<
ck_
elementwise_half
>
{
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
m1_shape
{
migraphx
::
shape
::
float
_type
,
{
128
,
256
}};
migraphx
::
shape
m2_shape
{
migraphx
::
shape
::
float
_type
,
{
256
,
256
}};
migraphx
::
shape
m1_shape
{
migraphx
::
shape
::
half
_type
,
{
2
,
384
,
3072
}};
migraphx
::
shape
m2_shape
{
migraphx
::
shape
::
half
_type
,
{
3072
}};
auto
l1
=
mm
->
add_parameter
(
"1"
,
m1_shape
);
auto
l2
=
mm
->
add_parameter
(
"2"
,
m2_shape
);
l2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
{
2
,
384
,
3072
}}}),
l2
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"ck_
gemm
"
),
l1
,
l2
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"ck_
elementwise
"
),
l1
,
l2
);
return
p
;
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment