fwd_conv_batchnorm_rewrite.cpp 2.96 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
#include <migraphx/fwd_conv_batchnorm_rewrite.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/iterator_for.hpp>
6
#include <migraphx/ranges.hpp>
Paul's avatar
Paul committed
7
#include <migraphx/dfor.hpp>
8

Paul's avatar
Paul committed
9
namespace migraphx {
Paul's avatar
Paul committed
10
inline namespace MIGRAPHX_INLINE_NS {
11

12
13
void fwd_conv_batchnorm_rewrite::apply(program& p) const
{
wsttiger's avatar
wsttiger committed
14
    for(auto ins : iterator_for(p))
15
    {
Paul's avatar
Paul committed
16
        if(ins->name() != "batch_norm_inference")
17
            continue;
18
19
20
21
22
23
        // Get scale, bias, mean, variance from inputs
        const auto& gamma    = ins->inputs()[1]->eval();
        const auto& bias     = ins->inputs()[2]->eval();
        const auto& mean     = ins->inputs()[3]->eval();
        const auto& variance = ins->inputs()[4]->eval();
        if(any_of({gamma, bias, mean, variance}, [](auto arg) { return arg.empty(); }))
24
25
            continue;

Paul's avatar
Paul committed
26
        auto conv_ins = ins->inputs()[0];
Paul's avatar
Paul committed
27
        if(conv_ins->name() != "convolution")
28
            continue;
29
30
31
        // Get convolution weights
        const auto& weights = conv_ins->inputs()[1]->eval();
        if(weights.empty())
32
33
            continue;
        // Get epsilon
34
        auto bn_op   = any_cast<op::batch_norm_inference>(ins->get_operator());
35
36
        auto epsilon = bn_op.epsilon;
        // Get convolution op
37
        auto conv_op      = conv_ins->get_operator();
Paul's avatar
Paul committed
38
        auto weights_lens = weights.get_shape().lens();
Paul's avatar
Paul committed
39
        auto conv_lens    = conv_ins->get_shape().lens();
40
        argument new_weights{weights.get_shape()};
41
        argument new_bias{{bias.get_shape().type(), {bias.get_shape().elements()}}};
42
43
44
45
46
47
48
49
        visit_all(weights, gamma, bias, mean, variance, new_weights, new_bias)(
            [&](auto weights2,
                auto gamma2,
                auto bias2,
                auto mean2,
                auto variance2,
                auto new_weights2,
                auto new_bias2) {
Paul's avatar
Paul committed
50
                dfor(weights_lens[0], weights_lens[1], weights_lens[2], weights_lens[3])(
51
                    [&](std::size_t k, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
52
                        new_weights2(k, c, h, w) =
53
                            gamma2[k] / std::sqrt(variance2[k] + epsilon) * weights2(k, c, h, w);
Paul's avatar
Paul committed
54
                    });
Paul's avatar
Paul committed
55
                dfor(new_bias.get_shape().elements())([&](std::size_t c) {
56
57
                    new_bias2[c] =
                        bias2[c] - (gamma2[c] * mean2[c] / std::sqrt(variance2[c] + epsilon));
Paul's avatar
Paul committed
58
                });
59
60
61
            });
        // Replace convolution instruction with updated weights
        auto l_weights = p.add_literal({weights.get_shape(), new_weights.data()});
Paul's avatar
Paul committed
62
        auto l_bias    = p.add_literal({new_bias.get_shape(), new_bias.data()});
Paul's avatar
Paul committed
63
        auto c = p.replace_instruction(conv_ins, conv_op, {conv_ins->inputs()[0], l_weights});
Scott Thornton's avatar
Scott Thornton committed
64
        auto b = p.insert_instruction(ins, op::broadcast{1, c->get_shape()}, l_bias);
65
        p.replace_instruction(ins, op::add{}, {c, b});
66
67
    }
}
68

Paul's avatar
Paul committed
69
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
70
} // namespace migraphx