"test/vscode:/vscode.git/clone" did not exist on "8ea9fc25b0527e52a878bacdaf159a5058ac12e4"
cpu_lowering.cpp 22.5 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7

#include <migraph/cpu/cpu_lowering.hpp>
#include <migraph/instruction.hpp>
#include <migraph/dfor.hpp>
#include <migraph/operators.hpp>
#include <migraph/shape_for_each.hpp>
#include <migraph/iterator_for.hpp>
Paul's avatar
Paul committed
8
#include <migraph/cpu/gemm.hpp>
Paul's avatar
Paul committed
9
#include <unordered_map>
Paul's avatar
Paul committed
10
#include <utility>
Paul's avatar
Paul committed
11
12
13
14
15
16
17
18
19
20

namespace migraph {
namespace cpu {

template <typename T>
T zero(const T&)
{
    return T(0);
}

21
22
23
24
//
// cpu implemenataion of batch norm for inference
//
// inputs are:
25
26
27
28
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
Aditya Atluri's avatar
Aditya Atluri committed
29
// args[4] -> bias
30
31
32
//
// The equation to compute batch norm for inference is:
//
Aditya Atluri's avatar
Aditya Atluri committed
33
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
34
35
36
37
38
//
// the input data format should be nchw
//
struct cpu_batch_norm_inference
{
39
    op::batch_norm_inference op;
40

41
42
    std::string name() const { return "cpu::batch_norm_inference"; }

Paul's avatar
Paul committed
43
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
44

Paul's avatar
Paul committed
45
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
46
    {
47
48
        argument output{output_shape};

Aditya Atluri's avatar
Aditya Atluri committed
49
50
        double epsilon           = op.epsilon;
        auto input               = args[0];
Paul's avatar
Paul committed
51
52
53
54
        auto arg_gamma           = args[1];
        auto arg_bias            = args[2];
        auto mini_batch_mean     = args[3];
        auto mini_batch_variance = args[4];
55

56
        auto num_batch    = output_shape.lens()[0];
Aditya Atluri's avatar
Aditya Atluri committed
57
58
        auto num_channels = output_shape.lens()[1];
        auto image_height = output_shape.lens()[2];
59
        auto image_width  = output_shape.lens()[3];
Aditya Atluri's avatar
Aditya Atluri committed
60

61
        if(op.bn_mode == op::batch_norm_inference::spatial)
Scott Thornton's avatar
Scott Thornton committed
62
63
64
65
66
67
        {
            visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

                    dfor(num_batch, num_channels, image_height, image_width)(
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
68
                            assert((variance(c) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
69
70
71
72
73
                            result(n, c, h, w) = gamma(c) * (buffer(n, c, h, w) - mean(c)) /
                                                     std::sqrt(variance(c) + epsilon) +
                                                 bias(c);
                        });
                });
74
75
        }

76
        if(op.bn_mode == op::batch_norm_inference::per_activation)
Scott Thornton's avatar
Scott Thornton committed
77
        {
78
79
80
            visit_all(output, input, mini_batch_mean, mini_batch_mean, arg_gamma, arg_bias)(
                [&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {

Scott Thornton's avatar
Scott Thornton committed
81
                    dfor(num_batch, num_channels, image_height, image_width)(
82
                        [&](std::size_t n, std::size_t c, std::size_t h, std::size_t w) {
Paul's avatar
Paul committed
83
                            assert((variance(c, h, w) + epsilon) > 0);
Scott Thornton's avatar
Scott Thornton committed
84
85
86
87
88
89
                            result(n, c, h, w) = gamma(c, h, w) *
                                                     (buffer(n, c, h, w) - mean(c, h, w)) /
                                                     std::sqrt(variance(c, h, w) + epsilon) +
                                                 bias(c, h, w);
                        });
                });
90
        }
91
92
93
94
95

        return output;
    }
};

Paul's avatar
Paul committed
96
97
struct cpu_convolution
{
98
    op::convolution op;
Paul's avatar
Paul committed
99
100

    std::string name() const { return "cpu::convolution"; }
Paul's avatar
Paul committed
101
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    argument compute(context&, shape output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_h = input.get_shape().lens()[2];
            auto in_w = input.get_shape().lens()[3];

            auto wei_c = weights.get_shape().lens()[1];
            auto wei_h = weights.get_shape().lens()[2];
            auto wei_w = weights.get_shape().lens()[3];

            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x = i * op.stride[0] - op.padding[0];
                    const int start_y = j * op.stride[1] - op.padding[1];

                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, k, in_x, in_y) * weights(w, k, x, y);
                        }
                    });
                    output(o, w, i, j) = acc;
                });
        });
        return result;
    }
};

Scott Thornton's avatar
Scott Thornton committed
137
138
struct cpu_im2col
{
139
    op::im2col op;
Scott Thornton's avatar
Scott Thornton committed
140

Scott Thornton's avatar
Scott Thornton committed
141
142
    static std::string name() { return "cpu::im2col"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
143

wsttiger's avatar
wsttiger committed
144
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Scott Thornton's avatar
Scott Thornton committed
145
    {
Scott Thornton's avatar
Scott Thornton committed
146
        argument result{output_shape};
Scott Thornton's avatar
Scott Thornton committed
147
        auto input_shape   = args[0].get_shape();
Scott Thornton's avatar
Scott Thornton committed
148
149
        auto weights_shape = args[1].get_shape();
        visit_all(result, args[0])([&](auto col, auto input) {
Scott Thornton's avatar
Scott Thornton committed
150
151
            const std::size_t& height   = input_shape.lens()[2];
            const std::size_t& width    = input_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
152
153
154
            const std::size_t& channels = weights_shape.lens()[1];
            const std::size_t& kernel_h = weights_shape.lens()[2];
            const std::size_t& kernel_w = weights_shape.lens()[3];
Scott Thornton's avatar
Scott Thornton committed
155
156
            const std::size_t& pad_h    = op.padding[0];
            const std::size_t& pad_w    = op.padding[1];
Scott Thornton's avatar
Scott Thornton committed
157
158
159
160
            const std::size_t& stride_h = op.stride[0];
            const std::size_t& stride_w = op.stride[1];

            int kdiv2_h, kdiv2_w;
Scott Thornton's avatar
Scott Thornton committed
161
162
            kdiv2_h = kernel_h / 2;
            kdiv2_w = kernel_w / 2;
Scott Thornton's avatar
Scott Thornton committed
163
            // calculate output sizes
Scott Thornton's avatar
Scott Thornton committed
164
165
            const std::size_t col_height = (height - kernel_h + 2 * pad_h) / stride_h + 1;
            const std::size_t col_width  = (width - kernel_w + 2 * pad_w) / stride_w + 1;
wsttiger's avatar
wsttiger committed
166
            // account for padding for the starting position of the input pixels
Scott Thornton's avatar
Scott Thornton committed
167
            std::size_t iinput = kdiv2_h - pad_h;
wsttiger's avatar
wsttiger committed
168
            // loop over output pixels (ioutput, joutput)
Scott Thornton's avatar
Scott Thornton committed
169
170
171
172
173
174
175
176
            for(std::size_t ioutput = 0; ioutput < col_height; ioutput++, iinput += stride_h)
            {
                std::size_t jinput = kdiv2_w - pad_w;
                for(std::size_t joutput = 0; joutput < col_width; joutput++, jinput += stride_w)
                {
                    // compute linear index for output
                    std::size_t ldx = ioutput * col_width + joutput;
                    std::size_t p   = 0;
wsttiger's avatar
wsttiger committed
177
178
179
180
181
182
183
184
185
186
                    dfor(channels,
                         kernel_h,
                         kernel_w)([&](std::size_t c, std::size_t koffset, std::size_t loffset) {
                        int idx     = iinput + koffset - kdiv2_h;
                        int jdx     = jinput + loffset - kdiv2_w;
                        col(ldx, p) = ((idx >= 0) && (idx < height) && (jdx >= 0) && (jdx < width))
                                          ? input(0, c, idx, jdx)
                                          : 0;
                        p++;
                    });
Scott Thornton's avatar
Scott Thornton committed
187
188
                }
            }
Scott Thornton's avatar
Scott Thornton committed
189
        });
Scott Thornton's avatar
Scott Thornton committed
190
191
192
193
        return result;
    }
};

Paul's avatar
Paul committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
struct max_pool
{
    static std::string name() { return "max"; }
    static double start() { return std::numeric_limits<double>::lowest(); }

    static double apply(double x, double y)
    {
        double m = std::max(x, y);
        return (m);
    }

    static double final(double x, double) { return (x); }
};

struct avg_pool
{
    static std::string name() { return "average"; }
    static double start() { return 0.0; }

    static double apply(double x, double y) { return x + y; }

    static double final(double x, double y) { return x / y; }
};

template <class Op>
struct cpu_pooling
{
221
    op::pooling op;
Paul's avatar
Paul committed
222
223

    std::string name() const { return "cpu::pooling_" + Op::name(); }
Paul's avatar
Paul committed
224
225
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using type = typename decltype(output)::value_type;
            auto in_h  = input.get_shape().lens()[2];
            auto in_w  = input.get_shape().lens()[3];

            dfor(output_shape.lens()[0],
                 output_shape.lens()[1],
                 output_shape.lens()[2],
                 output_shape.lens()[3])(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x0 = i * op.stride[0] - op.padding[0];
                    const int start_y0 = j * op.stride[1] - op.padding[1];

                    const int hend = std::min(start_x0 + op.lengths[0], in_h);
                    const int wend = std::min(start_y0 + op.lengths[1], in_w);

                    const int start_x = std::max(start_x0, 0);
                    const int start_y = std::max(start_y0, 0);

                    const int w_h       = (hend - start_x);
                    const int w_w       = (wend - start_y);
                    const int pool_size = std::max(w_h * w_w, 1);

                    double acc = Op::start();
                    dfor(w_h, w_w)([&](int x, int y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc = Op::apply(acc, input(o, w, in_x, in_y));
                        }
                    });
                    output(o, w, i, j) = type(Op::final(acc, pool_size));
                });
        });
        return result;
    }
};

struct cpu_contiguous
{
269
    op::contiguous op;
Paul's avatar
Paul committed
270
    std::string name() const { return "cpu::contiguous"; }
Paul's avatar
Paul committed
271
272
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
273
    {
Paul's avatar
Paul committed
274
        assert(output_shape.standard());
Paul's avatar
Paul committed
275
276
277
278
279
280
281
282
283
284
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            shape_for_each(output.get_shape(), [&](const auto& idx) {
                output(idx.begin(), idx.end()) = input(idx.begin(), idx.end());
            });
        });
        return result;
    }
};

285
286
287
288
289
struct cpu_concat
{
    struct tensor_descriptor
    {
        tensor_descriptor() = default;
Scott Thornton's avatar
Scott Thornton committed
290
        tensor_descriptor(const shape& s) : lens(s.lens()), strides(s.strides()) {}
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        std::vector<std::size_t> multi(size_t idx) const
        {
            std::size_t sz = strides.size();
            std::vector<std::size_t> result(sz);
            size_t tidx = idx;
            for(size_t is = 0; is < sz; is++)
            {
                result[is] = tidx / strides[is];
                tidx       = tidx % strides[is];
            }
            return result;
        }
        size_t linear(std::vector<std::size_t> s) const
        {
Scott Thornton's avatar
Scott Thornton committed
305
            // return std::inner_product(s.begin(), s.end(), strides.begin(), 0);
306
307
308
309
310
311
312
313
314
315
316
317
            size_t idx = 0;
            for(size_t i = 0; i < s.size(); i++)
                idx += s[i] * strides[i];
            return idx;
        }
        std::vector<std::size_t> lens;
        std::vector<std::size_t> strides;
    };

    op::concat op;
    std::string name() const { return "cpu::concat"; }
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Scott Thornton's avatar
Scott Thornton committed
318
319
    std::vector<std::size_t> compute_offsets(const shape& output_shape,
                                             const std::vector<argument> args) const
320
321
    {
        std::vector<std::size_t> offsets;
Scott Thornton's avatar
Scott Thornton committed
322
        std::vector<std::size_t> offset(args[0].get_shape().lens().size(), 0);
323
        offset[op.axis] = 0;
Scott Thornton's avatar
Scott Thornton committed
324
        for(const auto& arg : args)
325
326
327
328
329
330
331
332
333
334
335
        {
            offsets.push_back(output_shape.index(offset));
            offset[op.axis] += arg.get_shape().lens()[op.axis];
        }
        return offsets;
    }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
    {

        argument result{output_shape};
        std::vector<std::size_t> coffsets = compute_offsets(output_shape, args);
Scott Thornton's avatar
Scott Thornton committed
336
        for(std::size_t l = 0; l < args.size(); l++)
337
338
339
340
        {
            auto argl = args[l];
            std::size_t nelements = argl.get_shape().elements();
            visit_all(result, argl)([&](auto output, auto input) {
Scott Thornton's avatar
Scott Thornton committed
341
                auto* outptr      = output.data() + coffsets[l];
342
343
344
                const auto* inptr = input.data();
                tensor_descriptor desc_input(input.get_shape());
                tensor_descriptor desc_output(output.get_shape());
Scott Thornton's avatar
Scott Thornton committed
345
                for(std::size_t i = 0; i < nelements; i++)
346
347
348
349
350
351
352
353
354
                {
                    outptr[desc_output.linear(desc_input.multi(i))] = inptr[i];
                }
            });
        }
        return result;
    }
};

Paul's avatar
Paul committed
355
356
struct cpu_gemm
{
357
    op::gemm op;
Paul's avatar
Paul committed
358
    std::string name() const { return "cpu::gemm"; }
Paul's avatar
Paul committed
359
    shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
360

Paul's avatar
Paul committed
361
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
362
363
    {
        argument result{output_shape};
Paul's avatar
Paul committed
364
        migemm(result, args[0], args[1], op.alpha, op.beta);
Paul's avatar
Paul committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
        return result;
    }
};

struct identity_op
{
    std::string name() const { return "cpu::identity"; }
    auto fcn() const
    {
        return [](auto x) { return x; };
    }
};

struct abs_op
{
    std::string name() const { return "cpu::abs"; }
    auto fcn() const
    {
        return [](auto x) { return std::abs(x); };
    }
};

struct exp_op
{
    std::string name() const { return "cpu::exp"; }
    auto fcn() const
    {
        return [](auto x) { return std::exp(x); };
    }
};

struct sin_op
{
    std::string name() const { return "cpu::sin"; }
    auto fcn() const
    {
        return [](auto x) { return std::sin(x); };
    }
};

struct cos_op
{
    std::string name() const { return "cpu::cos"; }
    auto fcn() const
    {
        return [](auto x) { return std::cos(x); };
    }
};

struct tan_op
{
    std::string name() const { return "cpu::tan"; }
    auto fcn() const
    {
        return [](auto x) { return std::tan(x); };
    }
};

struct asin_op
{
    std::string name() const { return "cpu::asin"; }
    auto fcn() const
    {
        return [](auto x) { return std::asin(x); };
    }
};

struct acos_op
{
    std::string name() const { return "cpu::acos"; }
    auto fcn() const
    {
        return [](auto x) { return std::acos(x); };
    }
};

struct atan_op
{
    std::string name() const { return "cpu::atan"; }
    auto fcn() const
    {
        return [](auto x) { return std::atan(x); };
    }
};

struct tanh_op
{
    std::string name() const { return "cpu::tanh"; }
    auto fcn() const
    {
        return [](auto x) { return std::tanh(x); };
    }
};

struct sigmoid_op
{
    std::string name() const { return "cpu::sigmoid"; }
    auto fcn() const
    {
        return [](auto x) { return 1.f / (1.f + std::exp(-x)); };
    }
};

struct neg_op
{
    std::string name() const { return "cpu::neg"; }
    auto fcn() const
    {
        return [](auto x) { return -x; };
    }
};

struct relu_op
{
    std::string name() const { return "cpu::relu"; }
    auto fcn() const
    {
        return [](auto x) { return x > 0 ? x : 0; };
    }
};

template <typename Op>
struct cpu_unary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
491
492
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    {
        argument result{output_shape};
        result.visit([&](auto output) {
            args[0].visit([&](auto input) {
                std::transform(input.begin(), input.end(), output.begin(), op.fcn());
            });
        });
        return result;
    }
};

struct softmax2d
{
    std::string name() const { return "cpu::softmax2d"; }
Paul's avatar
Paul committed
507
508
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
    {
        argument result{output_shape};
        visit_all(result, args[0])([&](auto output, auto input) {
            using value_type = typename decltype(input)::value_type;
            auto nb          = input.get_shape().lens()[0];
            auto nc          = input.get_shape().lens()[1];
            auto nh          = input.get_shape().lens()[2];
            auto nw          = input.get_shape().lens()[3];
            dfor(nb, nh, nw)([&](std::size_t b, std::size_t i, std::size_t j) {
                value_type cmax = std::numeric_limits<value_type>::lowest();
                for(int c = 0; c < nc; c++)
                {
                    cmax = std::max(cmax, input(b, c, i, j));
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = std::exp(input(b, c, i, j) - cmax);
                }
                value_type sum = value_type(0);
                for(int c = 0; c < nc; c++)
                {
                    sum += output(b, c, i, j);
                }
                for(int c = 0; c < nc; c++)
                {
                    output(b, c, i, j) = output(b, c, i, j) / sum;
                }
            });
        });
        return result;
    }
};

struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x + y; };
    }
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x - y; };
    }
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x * y; };
    }
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const
    {
        return [](auto x, auto y) { return x / y; };
    }
};

template <typename Op>
struct cpu_binary
{
    Op op;
    std::string name() const { return op.name(); }
Paul's avatar
Paul committed
583
584
    shape compute_shape(const std::vector<shape>& inputs) const { return inputs.front(); }
    argument compute(context&, const shape& output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    {
        argument result{output_shape};
        visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
            if(input1.get_shape().packed() and input2.get_shape().packed())
            {
                std::transform(
                    input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
            }
            else
            {
                shape_for_each(output.get_shape(), [&](const auto& idx) {
                    output(idx.begin(), idx.end()) =
                        op.fcn()(input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
                });
            }
        });
        return result;
    }
};

struct cpu_apply
{
    program* prog;
    std::unordered_map<std::string, std::function<void(instruction_ref)>> apply_map{};

    template <class T>
    auto simple_op()
    {
        return [this](instruction_ref ins) { apply_simple_op<T>(ins); };
    }

    template <class T, class Op>
    auto extend_op()
    {
        return [this](instruction_ref ins) { apply_extend_op<T, Op>(ins); };
    }

    void init()
    {
624
625
626
        apply_map["im2col"]      = extend_op<cpu_im2col, op::im2col>();
        apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
        apply_map["gemm"]        = extend_op<cpu_gemm, op::gemm>();
Aditya Atluri's avatar
Aditya Atluri committed
627
        apply_map["batch_norm_inference"] =
628
629
            extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
        apply_map["contiguous"] = extend_op<cpu_contiguous, op::contiguous>();
Scott Thornton's avatar
Scott Thornton committed
630
        apply_map["concat"]     = extend_op<cpu_concat, op::concat>();
Paul's avatar
Paul committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

        apply_map["identity"] = simple_op<cpu_unary<identity_op>>();
        apply_map["tanh"]     = simple_op<cpu_unary<tanh_op>>();
        apply_map["sigmoid"]  = simple_op<cpu_unary<sigmoid_op>>();
        apply_map["exp"]      = simple_op<cpu_unary<exp_op>>();
        apply_map["neg"]      = simple_op<cpu_unary<neg_op>>();
        apply_map["sin"]      = simple_op<cpu_unary<sin_op>>();
        apply_map["cos"]      = simple_op<cpu_unary<cos_op>>();
        apply_map["tan"]      = simple_op<cpu_unary<tan_op>>();
        apply_map["add"]      = simple_op<cpu_binary<add_op>>();
        apply_map["sub"]      = simple_op<cpu_binary<sub_op>>();
        apply_map["mul"]      = simple_op<cpu_binary<mul_op>>();
        apply_map["div"]      = simple_op<cpu_binary<div_op>>();

        apply_map["softmax"] = simple_op<softmax2d>();
    }

    void apply()
    {
        init();
        for(auto it : iterator_for(*prog))
        {
Paul's avatar
Paul committed
653
            if(it->name() == "activation")
Paul's avatar
Paul committed
654
655
656
            {
                apply_activation(it);
            }
Paul's avatar
Paul committed
657
            else if(it->name() == "pooling")
Paul's avatar
Paul committed
658
659
660
            {
                apply_pooling(it);
            }
Paul's avatar
Paul committed
661
            else if(apply_map.count(it->name()) > 0)
Paul's avatar
Paul committed
662
            {
Paul's avatar
Paul committed
663
                apply_map.at(it->name())(it);
Paul's avatar
Paul committed
664
665
666
667
668
669
670
            }
        }
    }

    template <class T>
    void apply_simple_op(instruction_ref ins)
    {
Paul's avatar
Paul committed
671
        prog->replace_instruction(ins, T{}, ins->inputs());
Paul's avatar
Paul committed
672
673
674
675
676
    }

    template <class T, class Op>
    void apply_extend_op(instruction_ref ins)
    {
677
        auto&& op = any_cast<Op>(ins->get_operator());
Paul's avatar
Paul committed
678
        prog->replace_instruction(ins, T{op}, ins->inputs());
Paul's avatar
Paul committed
679
680
681
682
    }

    void apply_activation(instruction_ref ins)
    {
683
        auto&& op = any_cast<op::activation>(ins->get_operator());
Paul's avatar
Paul committed
684
        if(op.mode == "relu")
Paul's avatar
Paul committed
685
            prog->replace_instruction(ins, cpu_unary<relu_op>{}, ins->inputs());
Paul's avatar
Paul committed
686
687
688
689
    }

    void apply_pooling(instruction_ref ins)
    {
690
        auto&& op = any_cast<op::pooling>(ins->get_operator());
Paul's avatar
Paul committed
691
        if(op.mode == "max")
Paul's avatar
Paul committed
692
            prog->replace_instruction(ins, cpu_pooling<max_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
693
        else if(op.mode == "average")
Paul's avatar
Paul committed
694
            prog->replace_instruction(ins, cpu_pooling<avg_pool>{op}, ins->inputs());
Paul's avatar
Paul committed
695
696
697
698
699
700
701
702
    }
};

void cpu_lowering::apply(program& p) const { cpu_apply{&p}.apply(); }

} // namespace cpu

} // namespace migraph