lowering.cpp 10.1 KB
Newer Older
1
#include <rocblas.h>
Paul's avatar
Paul committed
2
#include <migraph/miopen/lowering.hpp>
Paul's avatar
Paul committed
3
4
5
6
7
8
9
10
#include <migraph/manage_ptr.hpp>
#include <migraph/instruction.hpp>
#include <migraph/operators.hpp>
#include <migraph/shape_for_each.hpp>
#include <migraph/miopen/miopen.hpp>
#include <migraph/miopen/hip.hpp>
#include <migraph/dfor.hpp>
#include <migraph/iterator_for.hpp>
11
12
#include <migraph/miopen/rocblas.hpp>
#include <migraph/miopen/context.hpp>
Paul's avatar
Paul committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

namespace migraph {
namespace miopen {

struct miopen_convolution
{
    convolution op;
    shared<convolution_descriptor> cd;

    std::string name() const { return "miopen::convolution"; }
    shape compute_shape(std::vector<shape> inputs) const
    {
        check_shapes{inputs, *this}.has(3);
        return op.compute_shape({inputs.at(0), inputs.at(1)});
    }
Paul's avatar
Paul committed
28
    argument compute(miopen_context& ctx, shape output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    {
        auto x_desc = make_tensor(args[0].get_shape());
        auto w_desc = make_tensor(args[1].get_shape());
        auto y_desc = make_tensor(output_shape);

        float alpha = 1, beta = 0;
        int algo_count;
        miopenConvAlgoPerf_t perf;
        miopenFindConvolutionForwardAlgorithm(ctx.handle.get(),
                                              x_desc.get(),
                                              args[0].implicit(),
                                              w_desc.get(),
                                              args[1].implicit(),
                                              cd.get(),
                                              y_desc.get(),
                                              args[2].implicit(),
                                              1,
                                              &algo_count,
                                              &perf,
                                              nullptr,
                                              0,
                                              false);
        miopenConvolutionForward(ctx.handle.get(),
                                 &alpha,
                                 x_desc.get(),
                                 args[0].implicit(),
                                 w_desc.get(),
                                 args[1].implicit(),
                                 cd.get(),
                                 perf.fwd_algo,
                                 &beta,
                                 y_desc.get(),
                                 args[2].implicit(),
                                 nullptr,
                                 0);
        return args[2];
    }
};

struct miopen_pooling
{
    pooling op;
    shared<pooling_descriptor> pd;

    std::string name() const { return "miopen::pooling"; }
    shape compute_shape(std::vector<shape> inputs) const
    {
        check_shapes{inputs, *this}.has(2);
        return op.compute_shape({inputs.at(1)});
    }
Paul's avatar
Paul committed
79
    argument compute(miopen_context& ctx, shape output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    {
        auto x_desc = make_tensor(args[0].get_shape());
        auto y_desc = make_tensor(output_shape);

        float alpha = 1, beta = 0;

        miopenPoolingForward(ctx.handle.get(),
                             pd.get(),
                             &alpha,
                             x_desc.get(),
                             args[0].implicit(),
                             &beta,
                             y_desc.get(),
                             args[1].implicit(),
                             false,
                             nullptr,
                             0);

        return args[1];
    }
};

struct miopen_add
{
    std::string name() const { return "miopen::add"; }
    shape compute_shape(std::vector<shape> inputs) const
    {
        check_shapes{inputs, *this}.has(3);
        return inputs.at(0);
    }

Paul's avatar
Paul committed
111
    argument compute(miopen_context& ctx, shape output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    {
        if(args[1].get_shape().broadcasted())
        {
            argument result{output_shape};

            visit_all(result, from_gpu(args[0]), from_gpu(args[1]))(
                [&](auto output, auto input1, auto input2) {
                    shape_for_each(output.get_shape(), [&](const auto& idx) {
                        output(idx.begin(), idx.end()) =
                            input1(idx.begin(), idx.end()) + input2(idx.begin(), idx.end());
                    });
                });
            return to_gpu(result);
        }
        else
        {
            float alpha = 1, beta = 0;
            auto a_desc = make_tensor(args[0].get_shape());
            auto b_desc = make_tensor(args[1].get_shape());
            auto c_desc = make_tensor(output_shape);
            miopenOpTensor(ctx.handle.get(),
                           miopenTensorOpAdd,
                           &alpha,
                           a_desc.get(),
                           args[0].implicit(),
                           &alpha,
                           b_desc.get(),
                           args[1].implicit(),
                           &beta,
                           c_desc.get(),
                           args[2].implicit());
            return args[2];
        }
    }
};

struct miopen_gemm
{
    gemm op;
    std::string name() const { return "miopen::convolution"; }
    shape compute_shape(std::vector<shape> inputs) const
    {
        check_shapes{inputs, *this}.has(3);
        return op.compute_shape({inputs.at(0), inputs.at(1)});
    }
Paul's avatar
Paul committed
157
    argument compute(miopen_context& ctx, shape output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
158
    {
159
160
161
162
163
164
165
166
        float alpha     = 1.0f;
        float beta      = 0.0f;
        rocblas_int lda = args[0].get_shape().lens()[1];
        rocblas_int ldb = args[1].get_shape().lens()[1];
        rocblas_int ldc = args[2].get_shape().lens()[1];
        rocblas_int m   = output_shape.lens()[0];
        rocblas_int n   = output_shape.lens()[1];
        rocblas_int k   = args[0].get_shape().lens()[1];
167
        rocblas_sgemm(ctx.rbhandle.get(),
168
169
170
171
172
173
174
175
176
177
178
179
180
181
                      rocblas_operation_none,
                      rocblas_operation_none,
                      n,
                      m,
                      k,
                      &alpha,
                      args[1].implicit(),
                      ldb,
                      args[0].implicit(),
                      lda,
                      &beta,
                      args[2].implicit(),
                      ldc);
        return args[2];
Paul's avatar
Paul committed
182
183
184
185
186
187
188
189
190
191
192
193
194
    }
};

struct miopen_relu
{
    shared<activation_descriptor> ad;
    std::string name() const { return "miopen::relu"; }
    shape compute_shape(std::vector<shape> inputs) const
    {
        check_shapes{inputs, *this}.has(2);
        return inputs.at(1);
    }

Paul's avatar
Paul committed
195
    argument compute(miopen_context& ctx, shape output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    {
        float alpha = 1, beta = 0;
        auto x_desc = make_tensor(args[0].get_shape());
        auto y_desc = make_tensor(output_shape);
        miopenActivationForward(ctx.handle.get(),
                                ad.get(),
                                &alpha,
                                x_desc.get(),
                                args[0].implicit(),
                                &beta,
                                y_desc.get(),
                                args[1].implicit());

        return args[1];
    }
};

struct miopen_apply
{
    program* prog = nullptr;

    void apply()
    {
        prog->insert_instruction(prog->begin(), check_context<miopen_context>{});
        for(auto it = prog->begin(); it != prog->end(); it++)
        {
            if(it->op.name() == "convolution")
            {
                apply_convolution(it);
            }
            else if(it->op.name() == "activation")
            {
                apply_activation(it);
            }
            else if(it->op.name() == "pooling")
            {
                apply_pooling(it);
            }
            else if(it->op.name() == "add")
            {
                apply_add(it);
            }
            else if(it->op.name() == "gemm")
            {
                apply_gemm(it);
            }
        }
    }

    instruction_ref insert_allocation(instruction_ref ins, const shape& s)
    {
        if(ins == --prog->end())
        {
            return prog->add_parameter("output", s);
        }
        else
        {
            auto is     = prog->add_outline(s);
            auto result = prog->insert_instruction(ins, hip_allocate{}, is);
            return result;
        }
    }

    void apply_convolution(instruction_ref ins)
    {
        auto&& op   = any_cast<convolution>(ins->op);
        auto cd     = make_conv(op);
        auto output = insert_allocation(ins, ins->result);

        prog->replace_instruction(ins,
                                  miopen_convolution{op, std::move(cd)},
                                  ins->arguments.at(0),
                                  ins->arguments.at(1),
                                  output);
    }

    void apply_pooling(instruction_ref ins)
    {
        auto&& op   = any_cast<pooling>(ins->op);
        auto pd     = make_pooling(op);
        auto output = insert_allocation(ins, ins->result);

        prog->replace_instruction(
            ins, miopen_pooling{op, std::move(pd)}, ins->arguments.at(0), output);
    }

    void apply_activation(instruction_ref ins)
    {
        auto&& op = any_cast<activation>(ins->op);
        auto ad   = make_relu();
        if(op.mode == "relu")
        {
            auto output = insert_allocation(ins, ins->result);
            prog->replace_instruction(
                ins, miopen_relu{std::move(ad)}, ins->arguments.at(0), output);
        }
    }

    void apply_add(instruction_ref ins)
    {
        auto output = insert_allocation(ins, ins->result);
        prog->replace_instruction(
            ins, miopen_add{}, ins->arguments.at(0), ins->arguments.at(1), output);
    }

    void apply_gemm(instruction_ref ins)
    {
        auto&& op   = any_cast<gemm>(ins->op);
        auto output = insert_allocation(ins, ins->result);
        prog->replace_instruction(
            ins, miopen_gemm{op}, ins->arguments.at(0), ins->arguments.at(1), output);
    }
};

Paul's avatar
Paul committed
310
void lowering::apply(program& p) const { miopen_apply{&p}.apply(); }
Paul's avatar
Paul committed
311
312
313
314

} // namespace miopen

} // namespace migraph