reduce.cpp 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
25
26
27
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
28
#include <migraphx/gpu/compile_gen.hpp>
29
30
31
32
33
34
#include <migraphx/reduce_dims.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

Paul Fultz II's avatar
Paul Fultz II committed
35
36
using namespace migraphx::gpu::gen; // NOLINT

37
38
39
static const char* const simple_reduce_kernel = R"__migraphx__(
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/reduce.hpp>
Paul Fultz II's avatar
Paul Fultz II committed
40
#include <migraphx/kernels/vectorize.hpp>
41
42
43
44
45
46
47
#include <args.hpp>

namespace migraphx {

${preamble}

extern "C" {
Paul Fultz II's avatar
Paul Fultz II committed
48
__global__ void reduce_kernel(void* input_p, void* output_p) 
49
{
Paul Fultz II's avatar
Paul Fultz II committed
50
51
    
    transform_args(make_tensors(), ${transformers})(input_p, output_p)([](auto input, auto output) {
52

Paul Fultz II's avatar
Paul Fultz II committed
53
        simple_reduce<reduce::${algo}>(${reduction}, ${init}, input, output, ${read}, ${write});
54
55
56
57
58
59
60
61
62
    });
}
    
}

} // namespace migraphx

)__migraphx__";

Paul Fultz II's avatar
Paul Fultz II committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
static std::vector<std::size_t> get_reduce_lens(const std::vector<std::size_t>& input_lens,
                                                const std::vector<std::size_t>& output_lens)
{
    std::vector<std::size_t> reduce_lens;
    std::transform(output_lens.begin(),
                   output_lens.end(),
                   input_lens.begin(),
                   std::back_inserter(reduce_lens),
                   [](auto x, auto y) -> std::size_t {
                       if(x == y)
                           return 1;
                       else
                           return y;
                   });
    return reduce_lens;
}

Paul Fultz II's avatar
Paul Fultz II committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
template <class T>
static shape get_reduced_shape(const shape& s, const std::vector<T>& axes)
{
    auto lens = s.lens();
    std::fill(lens.begin(), lens.end(), 1);
    for(const auto& axis : axes)
        lens[axis] = s.lens()[axis];
    return shape{s.type(), lens};
}

template <class T>
static shape get_output_shape(const shape& s, const std::vector<T>& axes)
{
    auto lens = s.lens();
    for(const auto& axis : axes)
        lens[axis] = 1;
    return shape{s.type(), lens};
}

template <class ReduceLens>
static std::string get_reduce_algo(const std::vector<shape>& inputs, ReduceLens rlens)
Paul Fultz II's avatar
Paul Fultz II committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
{
    const auto init = std::numeric_limits<std::size_t>::max();
    // The minimum stride
    auto min_stride = std::inner_product(
        rlens.begin(),
        rlens.end(),
        inputs.front().strides().begin(),
        init,
        [](auto x, auto y) { return std::min(x, y); },
        [](auto len, auto stride) { return len == 1 ? init : stride; });
    if(min_stride > 2)
        return "lane";
    return "block";
}

Paul Fultz II's avatar
Paul Fultz II committed
116
117
118
119
120
121
122
static std::string get_reduce_algo(const std::vector<shape>& inputs)
{
    auto rlens = get_reduce_lens(inputs.front().lens(), inputs.back().lens());
    return get_reduce_algo(inputs, rlens);
}

struct simple_reduce_compiler : compiler<simple_reduce_compiler>
123
124
125
{
    std::vector<std::string> names() const
    {
Paul Fultz II's avatar
Paul Fultz II committed
126
127
128
129
130
131
132
133
134
135
136
        return {"simple_reduce",
                "reduce_sum",
                "reduce_mean",
                "reduce_max",
                "reduce_min",
                "reduce_prod"};
    }

    static std::size_t get_reduce_elements(const std::vector<shape>& inputs)
    {
        return inputs.front().elements() / inputs.back().elements();
137
138
139
140
141
    }

    operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
    {
        hip_compile_options options;
Paul Fultz II's avatar
Paul Fultz II committed
142
143
144
145
146
147
148
        options.inputs         = inputs;
        options.output         = inputs.back();
        options.virtual_inputs = reduce_dims(inputs);
        auto faxis             = find_fast_axis({options.virtual_inputs.front()});
        vectorize vec{};
        auto nelements = options.virtual_inputs.back().elements();
        auto algo      = v.get("algo", get_reduce_algo(options.virtual_inputs));
Paul Fultz II's avatar
Paul Fultz II committed
149
150
        if(algo == "block")
        {
151
152
153
154
            // Vectorize if the axis is a reduction axis
            if(options.virtual_inputs.back().lens()[faxis] == 1)
                vec = vectorize::elements(ctx, faxis, options.virtual_inputs);
            auto relements  = get_reduce_elements(options.virtual_inputs) / vec.size;
Paul Fultz II's avatar
Paul Fultz II committed
155
            auto block_size = compute_block_size(relements, 256);
156
            if(relements >= block_size * 256)
157
                algo = "block_large";
Paul Fultz II's avatar
Paul Fultz II committed
158
            options.set_launch_params(
Paul Fultz II's avatar
Paul Fultz II committed
159
                v, compute_global_for(ctx, nelements * block_size, 256), block_size);
Paul Fultz II's avatar
Paul Fultz II committed
160
161
162
        }
        else if(algo == "lane")
        {
Paul Fultz II's avatar
Paul Fultz II committed
163
            options.set_launch_params(v, compute_global_for(ctx, nelements, 256));
Paul Fultz II's avatar
Paul Fultz II committed
164
165
166
167
168
        }
        else
        {
            MIGRAPHX_THROW("Unknown reduce algo: " + algo);
        }
Paul Fultz II's avatar
Paul Fultz II committed
169
170
171
        options.kernel_name  = "reduce_kernel";
        std::string identity = "[](auto x) { return x; }";
        auto src             = interpolate_string(simple_reduce_kernel,
172
173
174
175
                                      {{"reduction", v.at("reduction").to<std::string>()},
                                       {"init", v.get("init", std::string{"0"})},
                                       {"read", v.get("read", identity)},
                                       {"write", v.get("write", identity)},
Paul Fultz II's avatar
Paul Fultz II committed
176
                                       {"algo", algo},
Paul Fultz II's avatar
Paul Fultz II committed
177
                                       {"transformers", make_transformer_args(vec)},
178
                                       {"preamble", v.get("preamble", std::string{})}});
Paul Fultz II's avatar
Paul Fultz II committed
179
        options.params += "-Wno-float-equal";
180
181
182
183
184
        return compile_hip_code_object(src, options);
    }

    compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
    {
185
        value v = value::object{};
Paul Fultz II's avatar
Paul Fultz II committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        reduce_op r{};
        r.set(ins, op);
        v["reduction"] = r.reduction;
        v["read"]      = r.read;
        v["write"]     = r.write;
        v["init"]      = r.init;
        return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
    }
};

static const char* const fused_reduce_kernel = R"__migraphx__(
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/reduce.hpp>
#include <migraphx/kernels/pointwise.hpp>
#include <migraphx/kernels/vectorize.hpp>
#include <args.hpp>

namespace migraphx {

${preamble}

extern "C" {
MIGRAPHX_GLOBAL void ${kernel}(${params})
{
    transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto y, auto... xs) {
        fused_reduce<reduce::${algo}, ${reduced}>(y, partial(${lambda})(xs...));
    });
}
    
}

} // namespace migraphx

)__migraphx__";

struct fused_reduce_compiler : compiler<fused_reduce_compiler>
{
    std::vector<std::string> names() const { return {"fused_reduce"}; }

    operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
    {
        auto axes           = v.at("axes").to_vector<std::size_t>();
        auto virtual_inputs = inputs;
        virtual_inputs.push_back(get_reduced_shape(inputs.front(), axes));
        virtual_inputs.push_back(get_output_shape(inputs.front(), axes));
        virtual_inputs           = reduce_dims(virtual_inputs);
        auto reduce_output_shape = virtual_inputs.back();
        virtual_inputs.pop_back();
        auto reduction_shape = virtual_inputs.back();
        virtual_inputs.pop_back();

        hip_compile_options options;
        options.inputs         = inputs;
        options.output         = inputs.back();
        options.virtual_inputs = virtual_inputs;
        auto faxis             = find_fast_axis({options.virtual_inputs.front()});
        vectorize vec{};
        auto nelements = reduce_output_shape.elements();
        auto algo = v.get("algo", get_reduce_algo(options.virtual_inputs, reduction_shape.lens()));
        if(algo == "block")
246
        {
Paul Fultz II's avatar
Paul Fultz II committed
247
248
249
250
251
252
253
254
255
            // Vectorize if the axis is a reduction axis
            if(reduce_output_shape.lens()[faxis] == 1)
                vec = vectorize::elements(ctx, faxis, options.virtual_inputs);
            auto relements  = reduction_shape.elements() / vec.size;
            auto block_size = compute_block_size(relements, 256);
            if(relements >= block_size * 256)
                algo = "block_large";
            options.set_launch_params(
                v, compute_global_for(ctx, nelements * block_size, 256), block_size);
256
        }
Paul Fultz II's avatar
Paul Fultz II committed
257
        else if(algo == "lane")
258
        {
Paul Fultz II's avatar
Paul Fultz II committed
259
            options.set_launch_params(v, compute_global_for(ctx, nelements, 256));
260
261
262
        }
        else
        {
Paul Fultz II's avatar
Paul Fultz II committed
263
            MIGRAPHX_THROW("Unknown reduce algo: " + algo);
264
        }
Paul Fultz II's avatar
Paul Fultz II committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        options.kernel_name = v.get("kernel", "reduce_kernel");
        auto src            = interpolate_string(
            fused_reduce_kernel,
            {{"kernel", options.kernel_name},
             {"params", enum_params(inputs.size(), "void * private_p")},
             {"args", enum_params(inputs.size(), "private_p")},
             {"algo", algo},
             {"reduced", "decltype(" + generate_make_shape(reduce_output_shape) + ")"},
             {"lambda", v.at("lambda").to<std::string>()},
             {"transformers", make_transformer_args(vec)},
             {"preamble", v.get("preamble", std::string{})}});
        options.params += "-Wno-float-equal";
        return compile_hip_code_object(src, options);
    }

    compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
    {
        assert(not ins->module_inputs().empty());
        auto v        = op.to_value();
        auto* rm      = ins->module_inputs().front();
        v["preamble"] = generate_reduce(*rm, "fused_reduce_op");
        v["lambda"]   = "MIGRAPHX_LIFT(fused_reduce_op)";
        v["kernel"]   = generate_name_from_ops(*rm) + "_kernel";
288
289
290
291
292
293
        return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
    }
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx