"src/targets/vscode:/vscode.git/clone" did not exist on "df78aadff85609c7acdbe29732c81115a1dd8528"
reduce.cpp 6.13 KB
Newer Older
1
2
3
4
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
Paul's avatar
Paul committed
5
#include <migraphx/gpu/compile_gen.hpp>
6
7
8
9
10
11
12
13
14
15
16
17
18
19

#include <migraphx/cpp_generator.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/module.hpp>
#include <migraphx/pass_manager.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

Paul's avatar
Paul committed
20
21
using namespace migraphx::gpu::gen;

22
23
24
static const char* const simple_reduce_kernel = R"__migraphx__(
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/reduce.hpp>
Paul's avatar
Paul committed
25
#include <migraphx/kernels/vectorize.hpp>
26
27
28
29
30
31
32
#include <args.hpp>

namespace migraphx {

${preamble}

extern "C" {
Paul's avatar
Paul committed
33
__global__ void reduce_kernel(void* input_p, void* output_p) 
34
{
Paul's avatar
Paul committed
35
36
    
    transform_args(make_tensors(), ${transformers})(input_p, output_p)([](auto input, auto output) {
37

Paul Fultz II's avatar
Paul Fultz II committed
38
        simple_reduce<reduce::${algo}>(${reduction}, ${init}, input, output, ${read}, ${write});
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    });
}
    
}

} // namespace migraphx

)__migraphx__";

static std::size_t get_reduce_elements(const std::vector<shape>& inputs)
{
    return inputs.front().elements() / inputs.back().elements();
}
static std::size_t get_reduce_elements(const std::vector<instruction_ref>& inputs)
{
    return get_reduce_elements(to_shapes(inputs));
}

Paul Fultz II's avatar
Paul Fultz II committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
static std::vector<std::size_t> get_reduce_lens(const std::vector<std::size_t>& input_lens,
                                                const std::vector<std::size_t>& output_lens)
{
    std::vector<std::size_t> reduce_lens;
    std::transform(output_lens.begin(),
                   output_lens.end(),
                   input_lens.begin(),
                   std::back_inserter(reduce_lens),
                   [](auto x, auto y) -> std::size_t {
                       if(x == y)
                           return 1;
                       else
                           return y;
                   });
    return reduce_lens;
}

static std::string get_reduce_algo(const std::vector<shape>& inputs)
{
    auto rlens      = get_reduce_lens(inputs.front().lens(), inputs.back().lens());
    const auto init = std::numeric_limits<std::size_t>::max();
    // The minimum stride
    auto min_stride = std::inner_product(
        rlens.begin(),
        rlens.end(),
        inputs.front().strides().begin(),
        init,
        [](auto x, auto y) { return std::min(x, y); },
        [](auto len, auto stride) { return len == 1 ? init : stride; });
    if(min_stride > 2)
        return "lane";
    return "block";
}

91
92
93
94
95
96
97
98
99
100
struct reduce_compiler : compiler<reduce_compiler>
{
    std::vector<std::string> names() const
    {
        return {"reduce", "reduce_sum", "reduce_mean", "reduce_max", "reduce_min", "reduce_prod"};
    }

    operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
    {
        hip_compile_options options;
Paul's avatar
Paul committed
101
102
103
104
        options.inputs         = inputs;
        options.output         = inputs.back();
        options.virtual_inputs = reduce_dims(inputs);
        auto faxis = find_fast_axis({options.virtual_inputs.front()});
Paul's avatar
Paul committed
105
106
        vectorize vec{};
        // Vectorize if the axis is a reduction axis
Paul's avatar
Paul committed
107
        if(options.virtual_inputs.back().lens()[faxis] == 1)
Paul's avatar
Paul committed
108
        {
Paul's avatar
Paul committed
109
            vec = vectorize::elements(faxis, options.virtual_inputs);
Paul's avatar
Paul committed
110
        }
Paul's avatar
Paul committed
111
112
113
        auto relements = get_reduce_elements(options.virtual_inputs) / vec.size;
        auto nelements = options.virtual_inputs.back().elements();
        auto algo            = v.get("algo", get_reduce_algo(options.virtual_inputs));
Paul Fultz II's avatar
Paul Fultz II committed
114
115
        if(algo == "block")
        {
Paul's avatar
Paul committed
116
            auto block_size = compute_block_size(relements, 256);
Paul Fultz II's avatar
Paul Fultz II committed
117
            options.set_launch_params(
Paul's avatar
Format  
Paul committed
118
                v,
Paul's avatar
Paul committed
119
                compute_global_for(ctx, nelements * block_size, 256),
Paul's avatar
Format  
Paul committed
120
                block_size);
Paul Fultz II's avatar
Paul Fultz II committed
121
122
123
        }
        else if(algo == "lane")
        {
Paul's avatar
Format  
Paul committed
124
            options.set_launch_params(
Paul's avatar
Paul committed
125
                v, compute_global_for(ctx, nelements, 256));
Paul Fultz II's avatar
Paul Fultz II committed
126
127
128
129
130
        }
        else
        {
            MIGRAPHX_THROW("Unknown reduce algo: " + algo);
        }
Paul's avatar
Format  
Paul committed
131
        options.kernel_name    = "reduce_kernel";
132
133
134
135
136
137
        std::string identity   = "[](auto x) { return x; }";
        auto src               = interpolate_string(simple_reduce_kernel,
                                      {{"reduction", v.at("reduction").to<std::string>()},
                                       {"init", v.get("init", std::string{"0"})},
                                       {"read", v.get("read", identity)},
                                       {"write", v.get("write", identity)},
Paul Fultz II's avatar
Paul Fultz II committed
138
                                       {"algo", algo},
Paul's avatar
Paul committed
139
                                       {"transformers", make_transformer_args(vec)},
140
                                       {"preamble", v.get("preamble", std::string{})}});
Paul Fultz II's avatar
Paul Fultz II committed
141
        options.params += "-Wno-float-equal";
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        return compile_hip_code_object(src, options);
    }

    compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
    {
        value v              = value::object{};
        auto reduce_elements = get_reduce_elements(ins->inputs());
        if(op.name() == "reduce_sum")
        {
            v["reduction"] = "op::sum{}";
        }
        else if(op.name() == "reduce_mean")
        {
            v["reduction"] = "op::sum{}";
            v["write"]     = "op::mean{" + std::to_string(reduce_elements) + "}";
        }
        else if(op.name() == "reduce_max")
        {
            v["reduction"] = "op::max{}";
            v["init"]      = "lowest{}";
        }
        else if(op.name() == "reduce_min")
        {
            v["reduction"] = "op::min{}";
            v["init"]      = "highest{}";
        }
        else if(op.name() == "reduce_prod")
        {
            v["reduction"] = "op::product{}";
            v["init"]      = "1";
        }
        else
        {
            MIGRAPHX_THROW("Unsupported reduce");
        }
        return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
    }
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx