ck_gemm_softmax_gemm.cpp 9.96 KB
Newer Older
Alan Turner's avatar
Alan Turner committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <fstream>
#include <migraphx/filesystem.hpp>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>

#include <migraphx/env.hpp>
#include <migraphx/file_buffer.hpp>
32
#include <migraphx/gpu/ck.hpp>
Alan Turner's avatar
Alan Turner committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/module.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

namespace gpu {

using namespace migraphx::gpu::gen; // NOLINT

// NOLINTNEXTLINE
static const char* const ck_gemm_softmax_gemm_kernel = R"__migraphx__(
#include <args.hpp>
#include <migraphx/kernels/ck_gemm_softmax_gemm.hpp>
#include <migraphx/kernels/pointwise.hpp>
#include <migraphx/kernels/ops.hpp>
54
55
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/generic_constant.hpp>
Alan Turner's avatar
Alan Turner committed
56
57
58
59
60
61
62
63
64
65
66
#include <${include}>

namespace migraphx {

${preamble}

extern "C" {

MIGRAPHX_GLOBAL void ${kernel}(${params})
{
    transform_args(make_tensors(), rotate_last())(${args})([](auto... xs) {
67
68
        auto settings = make_ck_gemm_softmax_gemm_settings(MIGRAPHX_MAKE_CONSTANT(float{SCALE}));
        ck_gemm_softmax_gemm<${solution}, ${blocks_per_batch}>(settings, xs...);
Alan Turner's avatar
Alan Turner committed
69
70
71
72
73
74
75
76
77
78
79
    });
}

}

} // namespace migraphx

)__migraphx__";

struct ck_gemm_softmax_gemm_compiler : compiler<ck_gemm_softmax_gemm_compiler>
{
Alan Turner's avatar
Alan Turner committed
80
81
82
83
    std::vector<std::string> names() const
    {
        return {"ck_gemm_softmax_gemm", "gpu::ck_gemm_softmax_gemm"};
    }
Alan Turner's avatar
Alan Turner committed
84

Alan Turner's avatar
Alan Turner committed
85
    ck::host::device_batched_gemm_softmax_gemm::Problem
86
    create_problem(const std::vector<shape>& inputs, const value&) const
Alan Turner's avatar
Alan Turner committed
87
    {
Alan Turner's avatar
Alan Turner committed
88
89
        const auto& a_shape  = inputs[0];
        const auto& b_shape  = inputs[1];
Alan Turner's avatar
Alan Turner committed
90
        const auto& b1_shape = inputs[2];
Alan Turner's avatar
Alan Turner committed
91
        const auto& c_shape  = inputs.back();
Alan Turner's avatar
Alan Turner committed
92

Alan Turner's avatar
Alan Turner committed
93
        // cppcheck-suppress unreadVariable
94
        auto rank        = a_shape.ndim();
Alan Turner's avatar
Alan Turner committed
95
96
97
98
99
100
101
        auto batch_count = get_batch_count(c_shape);
        auto m           = c_shape.lens()[rank - 2];
        m                = can_fold_batch(inputs) ? m * batch_count : m;
        auto n           = c_shape.lens().back();
        auto k           = a_shape.lens().back();
        auto o           = c_shape.lens().back();

Alan Turner's avatar
Alan Turner committed
102
103
        const bool trans_a  = transposed_matrix(a_shape);
        const bool trans_b  = transposed_matrix(b_shape);
Alan Turner's avatar
Alan Turner committed
104
        const bool trans_b1 = transposed_matrix(b1_shape);
Alan Turner's avatar
Alan Turner committed
105
106
107
        const bool trans_c  = transposed_matrix(c_shape);
        const auto a_type   = get_type(a_shape);
        const auto b_type   = get_type(b_shape);
Alan Turner's avatar
Alan Turner committed
108
        const auto b1_type  = get_type(b1_shape);
Alan Turner's avatar
Alan Turner committed
109
        const auto c_type   = get_type(c_shape);
Alan Turner's avatar
Alan Turner committed
110
111
112

        std::string ck_passthrough = "ck_passthrough";
        return ck::host::device_batched_gemm_softmax_gemm::Problem{m,
Alan Turner's avatar
Alan Turner committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
                                                                   n,
                                                                   k,
                                                                   o,
                                                                   trans_a,
                                                                   trans_b,
                                                                   trans_b1,
                                                                   trans_c,
                                                                   a_type,
                                                                   b_type,
                                                                   b1_type,
                                                                   c_type,
                                                                   ck_passthrough,
                                                                   ck_passthrough,
                                                                   ck_passthrough,
127
                                                                   ck_passthrough};
Alan Turner's avatar
Alan Turner committed
128
129
130
131
    }

    operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
    {
Alan Turner's avatar
Alan Turner committed
132
        const auto& c_shape  = inputs.back();
133
        auto tuning_value    = v.get("tuning_value", 5);
Alan Turner's avatar
Alan Turner committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        auto batch_count = get_batch_count(c_shape);
        auto problem     = create_problem(inputs, v);

        const auto include_header   = problem.GetIncludeHeader();
        const auto solutions        = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
        const auto& solution        = solutions.at(tuning_value);
        const auto template_str     = solution.template_str;
        const auto blocks_per_batch = solution.grid_size;
        const auto block_size       = solution.block_size;

        hip_compile_options options;
        options.additional_src_files = ck_headers();
        auto grid_size = can_fold_batch(inputs) ? blocks_per_batch : batch_count * blocks_per_batch;
        options.set_launch_params(v, grid_size * block_size, block_size);
        options.inputs         = inputs;
        options.output         = c_shape;
        options.kernel_name    = v.get("kernel", "ck_gemm_softmax_gemm_kernel");
        options.virtual_inputs = inputs;
        if(can_fold_batch(inputs))
        {
            auto vinputs = inputs;
            fold_batch_dims(vinputs[0]);
            remove_batch_dims(vinputs[1]);
            std::for_each(vinputs.begin() + 2, vinputs.end(), fold_batch_dims);
            options.virtual_inputs = vinputs;
        }

        if(v.get("check", false) or enabled(MIGRAPHX_CK_DEBUG{}))
            options.params += " -DMIGRAPHX_CK_CHECK=1";

164
165
166
167
168
        // scale
        assert(v.contains("scale"));
        auto scale = v.at("scale").to<float>();
        options.params += " -DSCALE=" + std::to_string(scale);

Alan Turner's avatar
Alan Turner committed
169
170
171
172
173
174
175
176
        auto src = interpolate_string(ck_gemm_softmax_gemm_kernel,
                                      {{"solution", template_str},
                                       {"include", include_header},
                                       {"params", enum_params(inputs.size(), "void * private_p")},
                                       {"args", enum_params(inputs.size(), "private_p")},
                                       {"blocks_per_batch", to_string(blocks_per_batch)},
                                       {"preamble", v.get("preamble", std::string{})},
                                       {"kernel", options.kernel_name}});
Alan Turner's avatar
Alan Turner committed
177

Alan Turner's avatar
Alan Turner committed
178
179
180
181
182
183
184
185
186
187
188
        return compile_hip_code_object(src, options);
    }

    value create_settings(instruction_ref ins, const operation& op) const
    {
        auto v      = op.to_value();
        v["kernel"] = "ck_gemm_softmax_gemm_kernel";
        if(not ins->module_inputs().empty())
        {
            auto* pm      = ins->module_inputs().front();
            v["preamble"] = generate_pointwise(*pm, "post_ck_gemm_softmax_gemm_function") +
Alan Turner's avatar
Alan Turner committed
189
190
                            "\nMIGRAPHX_LIFT_CLASS(post_ck_gemm_softmax_gemm, "
                            "post_ck_gemm_softmax_gemm_function);";
Alan Turner's avatar
Alan Turner committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
            v["post"]   = "ck_function_adaptor<post_ck_gemm_softmax_gemm>";
            v["kernel"] = "ck_gemm_softmax_gemm_" + generate_name_from_ops(*pm) + "_kernel";
        }
        return v;
    }

    compiler_replace
    compile(context& ctx, instruction_ref ins, const operation& op, const value& solution) const
    {
        auto shapes = to_shapes(ins->inputs());
        auto v      = create_settings(ins, op);
        if(not solution.is_null())
            v["tuning_value"] = solution;
        return {compile_op(ctx, shapes, v),
                [=](module& m, instruction_ref ins2, const operation& code_object) {
                    if(enabled(MIGRAPHX_LOG_CK_GEMM{}))
                    {
                        std::vector<shape> gemm_shapes{
                            shapes[0], shapes[1], shapes.back().with_type(shapes[0].type())};
Alan Turner's avatar
Alan Turner committed
210
211
                        std::cout << "gpu::ck_gemm_softmax_gemm: "
                                  << to_json_string(to_value(gemm_shapes)) << std::endl;
Alan Turner's avatar
Alan Turner committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
                    }
                    m.replace_instruction(ins2, code_object, ins2->inputs());
                }};
    }

    optional<tuning_config>
    get_tuning_config(context& ctx, instruction_ref ins, const operation& op, bool exhaustive) const
    {
        if(not exhaustive and not enabled(MIGRAPHX_TUNE_CK{}))
            return nullopt;
        tuning_config tc;
        auto shapes    = to_shapes(ins->inputs());
        auto problem   = create_problem(shapes, create_settings(ins, op));
        auto solutions = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
        tc.solutions.resize(solutions.size());
        std::iota(tc.solutions.begin(), tc.solutions.end(), 0);
        std::vector<shape> gemm_shapes{shapes[0], shapes[1], shapes.back()};
        tc.problem = to_value(gemm_shapes);
        return tc;
    }
};

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx