concat.hpp 3.24 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#ifndef MIGRAPHX_GUARD_OPERATORS_CONCAT_HPP
#define MIGRAPHX_GUARD_OPERATORS_CONCAT_HPP

#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {

struct concat
{
    std::size_t axis = 0;
22
23
24
25
26
27

    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.axis, "axis"));
    }
Paul's avatar
Paul committed
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    std::string name() const { return "concat"; }
    std::vector<std::size_t> compute_offsets(const shape& output_shape,
                                             const std::vector<argument>& args) const
    {
        std::vector<std::size_t> offsets;
        std::vector<std::size_t> offset(args[0].get_shape().lens().size(), 0);
        offset[axis] = 0;
        for(const auto& arg : args)
        {
            offsets.push_back(output_shape.index(offset));
            offset[axis] += arg.get_shape().lens()[axis];
        }
        return offsets;
    }
    shape compute_shape(std::vector<shape> inputs) const
    {
        if(inputs.empty())
        {
            MIGRAPHX_THROW("Number of input tensors should exceed 0");
        }

        const auto& first_shape_lens = inputs.front().lens();
        const auto& type             = inputs.front().type();
        for(std::size_t l = 0; l < first_shape_lens.size(); l++)
        {
            if(l != axis)
            {
                if(!std::all_of(inputs.begin(), inputs.end(), [&](auto s) {
                       return s.lens()[l] == first_shape_lens[l];
                   }))
                {
                    MIGRAPHX_THROW("Non-axis dimensions should match");
                }
            }
        }
        std::size_t new_dim_axis = 0;
        for(const auto& input : inputs)
        {
            const auto& lens = input.lens();
            new_dim_axis += lens[axis];
        }
        std::vector<std::size_t> new_lens;
        std::copy(first_shape_lens.begin(), first_shape_lens.end(), std::back_inserter(new_lens));
        new_lens[axis] = new_dim_axis;
        return {type, new_lens};
    }
    argument compute(const shape& output_shape, std::vector<argument> args) const
    {
        argument result{output_shape};
        std::vector<std::size_t> coffsets = compute_offsets(output_shape, args);
        for(std::size_t l = 0; l < args.size(); l++)
        {
            auto argl             = args[l];
            std::size_t nelements = argl.get_shape().elements();
            visit_all(result, argl)([&](auto output, auto input) {
                auto slice_shape =
                    shape{output_shape.type(), input.get_shape().lens(), output_shape.strides()};
                auto slice = make_view(slice_shape, output.data() + coffsets[l]);
                // cppcheck-suppress useStlAlgorithm
                for(std::size_t i = 0; i < nelements; i++)
                {
                    slice[i] = input[i];
                }
            });
        }
        return result;
    }
};

} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx

#endif