"vscode:/vscode.git/clone" did not exist on "68aca7680528b9e16860f2291d88bf6f09fbd3fa"
parse_conv.cpp 4.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
kahmed10's avatar
kahmed10 committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#include <migraphx/tf/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/pad_calc.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/make_op.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace tf {

struct parse_conv : op_parser<parse_conv>
{
    bool transpose() const { return true; }
    std::vector<op_desc> operators() const { return {{"Conv2D"}}; }

    instruction_ref parse(const op_desc& /*opd*/,
                          const tf_parser& parser,
                          tf_parser::node_info info,
                          std::vector<instruction_ref> args) const
    {
        op::convolution op;
        if(contains(info.attributes, "strides"))
        {
            std::vector<size_t> stride;
            copy(info.attributes.at("strides").list().i(), std::back_inserter(stride));
            parser.reorder_data(stride);
            if(stride.size() != 4)
            {
                MIGRAPHX_THROW("strides should have 4 values");
            }
            op.stride[0] = stride[2];
            op.stride[1] = stride[3];
        }
        if(contains(info.attributes, "dilations"))
        {
            std::vector<size_t> dilation;
            copy(info.attributes.at("dilations").list().i(), std::back_inserter(dilation));
            parser.reorder_data(dilation);
            if(dilation.size() != 4)
            {
                MIGRAPHX_THROW("dilation should have 4 values");
            }
            op.dilation[0] = dilation[2];
            op.dilation[1] = dilation[3];
        }

        auto weights = parser.to_kcxy(args[1]);
        auto l0      = args[0];
        if(contains(info.attributes, "padding"))
        {
            const std::string& pad_mode = info.attributes.at("padding").s();
            if(pad_mode.find("SAME") != std::string::npos)
            {
                op.padding_mode                 = op::padding_mode_t::same;
                std::vector<size_t> weight_dims = weights->get_shape().lens();
                size_t weight_h                 = weight_dims[2];
                size_t weight_w                 = weight_dims[3];

                auto input_dims = l0->get_shape().lens();
                std::vector<int64_t> pads(input_dims.size());
                calculate_padding(0, pads, input_dims[2], op.stride[0], op.dilation[0], weight_h);
                calculate_padding(1, pads, input_dims[3], op.stride[1], op.dilation[1], weight_w);

kahmed10's avatar
kahmed10 committed
88
                op.padding = std::vector<size_t>(pads.begin(), pads.end());
kahmed10's avatar
kahmed10 committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
            }
            else if(pad_mode.find("VALID") != std::string::npos)
            {
                op.padding_mode = op::padding_mode_t::valid;
            }
            else if(pad_mode.find("EXPLICIT") != std::string::npos)
            {
                std::vector<size_t> padding;
                copy(info.attributes.at("explicit_paddings").list().i(),
                     std::back_inserter(padding));
                if(padding.size() != 4)
                {
                    MIGRAPHX_THROW("padding should have 4 values");
                }
103
                if(padding[0] != padding[2] or padding[1] != padding[3])
kahmed10's avatar
kahmed10 committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
                {
                    MIGRAPHX_THROW("migraphx does not support asymetric padding");
                }
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
            }
        }
        return info.add_instruction(op, {l0, weights});
    }
};

} // namespace tf
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx