logsoftmax.cpp 3.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
25
26
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/gpu/device/logsoftmax.hpp>
27
#include <migraphx/gpu/device/reduce.hpp>
28
29
30
31
32
33
34
35
36
#include <migraphx/gpu/device/tensor.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/gpu/device/types.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {

37
void logsoftmax(hipStream_t stream, const argument& result, const argument& arg, int64_t axis)
38
{
39
40
    auto batch_lens          = result.get_shape().lens();
    index_int batch_item_num = batch_lens[axis];
41
    batch_lens[axis]         = 1;
42
    migraphx::shape batch_shape{result.get_shape().type(), batch_lens};
43

Paul's avatar
Paul committed
44
    hip_visit_all(result, arg, batch_shape)([&](auto output, auto input, auto batch) {
45
46
        const index_int max_block_size = 256;
        const index_int block_size     = compute_block_size(batch_item_num, max_block_size);
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        gs_launch(stream,
                  batch_shape.elements() * block_size,
                  block_size)([=](auto i, auto idx) __device__ {
50
            auto data_idx = batch.multi(i / block_size);
Shucai Xiao's avatar
Shucai Xiao committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
            using type    = device_type<std::remove_cv_t<typename decltype(input)::value_type>>;
            type init     = lowest();

            auto batch_max = block_reduce<max_block_size>(
                idx, max{}, init, batch_item_num, [&](auto j) __device__ {
                    data_idx[axis] = j;
                    return input[data_idx];
                });

            auto batch_sum =
                block_reduce<max_block_size>(idx, sum{}, 0, batch_item_num, [&](auto j) __device__ {
                    data_idx[axis] = j;
                    auto val       = input[data_idx] - batch_max;
                    return ::exp(to_hip_type(val));
                });
66
67
68

            auto log_batch_sum = ::log(to_hip_type(batch_sum)) + batch_max;

69
            idx.local_stride(batch_item_num, [&](auto j) __device__ {
Shucai Xiao's avatar
Shucai Xiao committed
70
                data_idx[axis]   = j;
Shucai Xiao's avatar
Shucai Xiao committed
71
                output[data_idx] = input[data_idx] - log_batch_sum;
72
            });
73
74
75
76
77
78
79
80
        });
    });
}

} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx