simplify_qdq.cpp 6.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
turneram's avatar
turneram committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#include <migraphx/simplify_qdq.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/program.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/register_op.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

std::unordered_set<std::string> get_quantizable_op_names()
{
    static std::unordered_set<std::string> s = {"convolution", "dot"};
    return s;
}

MIGRAPHX_PRED_MATCHER(has_same_value, instruction_ref ins)
{
    if(ins->name() != "@literal")
        return false;
    bool all_same = false;
    ins->get_literal().visit([&](auto s) {
        all_same = std::all_of(s.begin() + 1, s.end(), [&](const auto& scale) {
            return float_equal(scale, s.front());
        });
    });
    return all_same;
}

struct match_find_quantizable_ops
{

    static auto dequantizelinear_op(const std::string& name, const std::string& scale)
    {
        return match::name("dequantizelinear")(
            match::arg(0)(match::skip(match::name("quantizelinear"))(match::any().bind(name))),
            match::arg(1)(match::skip_broadcasts(has_same_value().bind(scale))),
            match::arg(2)(match::skip_broadcasts(match::all_of(match::has_value(0)))));
    }

    auto matcher() const
    {
        return match::name(get_quantizable_op_names())(
            match::arg(0)(dequantizelinear_op("x1", "scale1")),
            match::arg(1)(dequantizelinear_op("x2", "scale2")));
    }

79
    void apply(module& m, const match::matcher_result& r) const
turneram's avatar
turneram committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    {
        auto qop    = r.result;
        auto q1     = r.instructions["x1"];
        auto q2     = r.instructions["x2"];
        auto scale1 = r.instructions["scale1"];
        auto scale2 = r.instructions["scale2"];

        // Only INT8 type currently supported
        if(q1->get_shape().type() != migraphx::shape::int8_type or
           q2->get_shape().type() != migraphx::shape::int8_type)
            return;

        double scale;
        visit_all(scale1->get_literal(), scale2->get_literal())(
            [&](const auto s1, const auto s2) { scale = s1.front() * s2.front(); });

        auto qop_args  = qop->inputs();
        qop_args.at(0) = q1;
        qop_args.at(1) = q2;
        instruction_ref dq;
        instruction_ref dq_scale;
        instruction_ref zero_point;
        if(qop->name() == "convolution")
        {
            auto conv_val = qop->get_operator().to_value();
            dq            = m.insert_instruction(
                qop, migraphx::make_op("quant_convolution", conv_val), qop_args);
        }
        else if(qop->name() == "dot")
        {
110
            dq = m.insert_instruction(qop, migraphx::make_op("quant_dot"), qop_args);
turneram's avatar
turneram committed
111
        }
112
113
        auto ins_type = qop->get_shape().type();
        dq_scale      = m.add_literal(literal({ins_type}, {scale}));
turneram's avatar
turneram committed
114
115
116

        auto lens = dq->get_shape().lens();
        auto scale_mb =
117
            m.insert_instruction(qop, make_op("multibroadcast", {{"out_lens", lens}}), dq_scale);
turneram's avatar
turneram committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        dq = m.insert_instruction(qop, make_op("dequantizelinear"), dq, scale_mb);
        m.replace_instruction(qop, dq);
    }
};

bool compare_literals(instruction_ref ins1, instruction_ref ins2)
{
    if(ins1->name() == "broadcast" or ins1->name() == "multibroadcast")
        ins1 = ins1->inputs().front();
    auto x = ins1->eval();
    if(x.empty())
        return false;
    auto literal1 = ins1->get_literal();
    if(ins2->name() == "broadcast" or ins2->name() == "multibroadcast")
        ins2 = ins2->inputs().front();
    auto y = ins2->eval();
    if(y.empty())
        return false;
    auto literal2 = ins2->get_literal();

    bool diff_shapes_equal_vals = false;
    visit_all(ins1->get_literal(), ins2->get_literal())([&](const auto l1, const auto l2) {
        diff_shapes_equal_vals =
            std::all_of(
                l1.begin() + 1, l1.end(), [&](auto v) { return float_equal(v, l1.front()); }) and
            std::all_of(l2.begin(), l2.end(), [&](auto v) { return float_equal(v, l1.front()); });
    });

    return (x == y) or diff_shapes_equal_vals;
}

void remove_qdq_pairs(module& m)
{
    for(auto ins : iterator_for(m))
    {
        auto args = ins->inputs();
        for(auto&& arg : args)
        {
            if(arg->name() == "dequantizelinear")
            {
                auto q = arg->inputs().front();
                if((q->name() == "quantizelinear") and
                   compare_literals(arg->inputs().at(1), q->inputs().at(1)) and
                   compare_literals(arg->inputs().at(2), q->inputs().at(2)))
                {
                    instruction::replace_argument(ins, arg, q->inputs().front());
                }
            }
        }
    }
}

void simplify_qdq::apply(module& m) const
{
    match::find_matches(m, match_find_quantizable_ops{});
    migraphx::run_passes(m, {migraphx::dead_code_elimination{}});
    remove_qdq_pairs(m);
    migraphx::run_passes(m, {migraphx::dead_code_elimination{}});
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx