deconvolution.cpp 2.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
25
26
27
28
29
30
31
32
33
34
#include <migraphx/config.hpp>
#include <migraphx/cpu/dnnl.hpp>
#include <migraphx/op/deconvolution.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace cpu {

struct dnnl_deconvolution
    : dnnl_extend_op<dnnl_deconvolution, dnnl::deconvolution_forward, op::deconvolution>
{
35
36
37
38
    std::vector<int> arg_map(int) const
    {
        return {MIGRAPHX_DNNL_PREFIX(ARG_SRC), MIGRAPHX_DNNL_PREFIX(ARG_WEIGHTS)};
    }
39

40
    shape adjust_shape(const shape& x, int i, const shape& output) const
41
    {
42
        auto s = base_adjust_shape(x, output);
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        if(i == 1)
        {
            // The input and output channels are flipped for dnnl
            auto lens = s.lens();
            std::swap(lens[0], lens[1]);
            auto strides = s.strides();
            std::swap(strides[0], strides[1]);
            return {s.type(), lens, strides};
        }
        return s;
    }

    dnnl::deconvolution_forward::desc
    get_desc(const std::unordered_map<int, dnnl::memory::desc>& m) const
    {
        // In DNNL dilation is zero-based
        auto dilation = op.dilation;
        std::transform(
            dilation.begin(), dilation.end(), dilation.begin(), [](auto x) { return x - 1; });
        return {dnnl::prop_kind::forward_inference,
                dnnl::algorithm::deconvolution_direct,
64
65
66
                m.at(MIGRAPHX_DNNL_PREFIX(ARG_SRC)),
                m.at(MIGRAPHX_DNNL_PREFIX(ARG_WEIGHTS)),
                m.at(MIGRAPHX_DNNL_PREFIX(ARG_DST)),
67
68
69
70
71
72
73
74
75
76
                to_dnnl_dims(op.stride),
                to_dnnl_dims(dilation),
                to_dnnl_dims(op.padding),
                to_dnnl_dims(op.padding)};
    }
};

} // namespace cpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx