parse_multinomial.cpp 6.37 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
Brian Pickrell's avatar
Brian Pickrell committed
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
turneram's avatar
turneram committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
#include <random>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

struct parse_multinomial : op_parser<parse_multinomial>
{
    std::vector<op_desc> operators() const { return {{"Multinomial"}}; }

    instruction_ref parse(const op_desc& /*opd*/,
                          const onnx_parser& /*parser*/,
                          const onnx_parser::node_info& info,
                          std::vector<instruction_ref> args) const
    {
Brian Pickrell's avatar
Brian Pickrell committed
44
45
46
        if(args.empty())
            MIGRAPHX_THROW("PARSE_MULTINOMIAL: no arguments given");

turneram's avatar
turneram committed
47
48
49
50
51
52
53
54
        int dtype = 6;
        if(contains(info.attributes, "dtype"))
            dtype = info.attributes.at("dtype").i();
        shape::type_t output_type = get_type(dtype);

        size_t sample_size = 1;
        if(contains(info.attributes, "sample_size"))
            sample_size = info.attributes.at("sample_size").i();
Brian Pickrell's avatar
Brian Pickrell committed
55
56
57
58
59
60
61
        else
            MIGRAPHX_THROW("PARSE_MULTINOMIAL: sample_size not given");

        // Use logarithmic math to scale probabilities while avoiding division by very
        // small numbers.  Scaling by the maximum makes very tiny ranges more
        // tractable; any constant factor gives equivalent distr. since the Multinomial op.
        // normalizes at runtime.
turneram's avatar
turneram committed
62
63
64
65

        // Subtract the per-batch maximum log-probability, making the per-batch max 0
        auto maxes =
            info.add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), args[0]);
Brian Pickrell's avatar
Brian Pickrell committed
66
        auto cdf = info.add_common_op("sub", args[0], maxes);
turneram's avatar
turneram committed
67
68
        // Take the element-wise exponent to get probabilities in the range (0, 1]
        cdf = info.add_instruction(migraphx::make_op("exp"), cdf);
Brian Pickrell's avatar
Brian Pickrell committed
69
        // Compute the cumulative distribution function
turneram's avatar
turneram committed
70
71
72
        cdf = info.add_instruction(
            migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf);

Brian Pickrell's avatar
Brian Pickrell committed
73
        instruction_ref seed_input;
74
        if(contains(info.attributes, "seed"))
Brian Pickrell's avatar
Brian Pickrell committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        {
            float seed = info.attributes.at("seed").f();
            migraphx::shape s{migraphx::shape::float_type, {1}};
            std::vector<float> data = {seed};
            seed_input              = info.add_literal(migraphx::literal(s, data));
        }
        else
        {
            seed_input = info.add_instruction(migraphx::make_op("random_seed"));
        }
        instruction_ref randoms;

        shape s0 = args[0]->get_shape();

        if(s0.dynamic())
        {
            //  Dynamic batch_size will be taken from args[0].  The input argument to this should
            // have a second dimension of sample_size.
            std::vector<shape::dynamic_dimension> dyn_dim_set;
            dyn_dim_set.emplace_back(s0.dyn_dims().front());
            dyn_dim_set.emplace_back(shape::dynamic_dimension{sample_size, sample_size});

            // read the input dimensions
            auto dim_of =
                info.add_instruction(migraphx::make_op("dimensions_of", {{"end", 2}}), args[0]);

            // The next two operations insert the value sample_size into the second array position

            // make an argument of (1, 0)
            shape s(shape::int64_type, {2});
            std::vector<int64_t> data1{1, 0};
            auto l1        = info.add_literal(s, data1);
            auto batch_arg = info.add_instruction(migraphx::make_op("mul"), dim_of, l1);
            std::vector<int64_t> data2(2, 0);
            // make an argument of (0, sample_size)
            data2[1]         = sample_size;
            auto l2          = info.add_literal(s, data2);
            auto alloc_shape = info.add_instruction(migraphx::make_op("add"), batch_arg, l2);
            // alloc_shape should contain the input-based shape dimensions as its values at runtime,
            // and its own shape is {2}

            // compile_shape is the shape used when compiling the Allocate op, and may be dynamic
            migraphx::shape compile_shape =
                migraphx::shape(s0.type(), {s0.dyn_dims().front(), {sample_size, sample_size}});
119

Brian Pickrell's avatar
Brian Pickrell committed
120
121
122
123
124
125
126
127
128
129
            // Allocate on-device storage for the random values
            auto alloc = info.add_instruction(
                migraphx::make_op("allocate", {{"shape", to_value(compile_shape)}}), alloc_shape);
            randoms = info.add_instruction(migraphx::make_op("random_uniform"), seed_input, alloc);
        }
        else
        {
            // use literal.  The array populated by random_uniform may have any shape, as long its
            // number of elements is batch_size * sample_size .
            size_t batch_size = s0.lens().front();
130
131
132
            auto rand_dummy   = info.add_literal(migraphx::literal{
                migraphx::shape{migraphx::shape::float_type, {batch_size, sample_size}},
                std::vector<float>(batch_size * sample_size)});
Brian Pickrell's avatar
Brian Pickrell committed
133
134
135
            randoms =
                info.add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy);
        }
turneram's avatar
turneram committed
136
137

        return info.add_instruction(
Brian Pickrell's avatar
Brian Pickrell committed
138
            migraphx::make_op("multinomial", {{"dtype", output_type}}), cdf, randoms);
turneram's avatar
turneram committed
139
140
141
142
143
144
    }
};

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx