parse_multinomial.cpp 4.9 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
turneram's avatar
turneram committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
#include <random>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

struct parse_multinomial : op_parser<parse_multinomial>
{
    std::vector<op_desc> operators() const { return {{"Multinomial"}}; }

    instruction_ref parse(const op_desc& /*opd*/,
                          const onnx_parser& /*parser*/,
                          const onnx_parser::node_info& info,
                          std::vector<instruction_ref> args) const
    {
        int dtype = 6;
        if(contains(info.attributes, "dtype"))
            dtype = info.attributes.at("dtype").i();
        shape::type_t output_type = get_type(dtype);

        size_t sample_size = 1;
        if(contains(info.attributes, "sample_size"))
            sample_size = info.attributes.at("sample_size").i();
52
53
        else
            MIGRAPHX_THROW("PARSE_MULTINOMIAL: sample_size not given");
turneram's avatar
turneram committed
54
55
56
57

        // Subtract the per-batch maximum log-probability, making the per-batch max 0
        auto maxes =
            info.add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), args[0]);
58
        auto cdf = info.add_common_op("sub", args[0], maxes);        
turneram's avatar
turneram committed
59
60
61
62
63
64
        // Take the element-wise exponent to get probabilities in the range (0, 1]
        cdf = info.add_instruction(migraphx::make_op("exp"), cdf);
        // Compute the cumulative density function
        cdf = info.add_instruction(
            migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf);

65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        // Make a shape that's the size of the sample set
        shape s0 = args[0]->get_shape();
        migraphx::shape dist_shape;

        instruction_ref rand_dummy;
        if(s0.dynamic())
        {
            dist_shape = {output_type, {s0.dyn_dims().front(), shape::dynamic_dimension({sample_size, sample_size})}};
            auto temp = info.add_instruction(make_op("dimensions_of", {{"start", 0}, {"end", s0.ndim() - 1}}), args[0]);

            auto asdf = temp->get_shape();

            rand_dummy = info.add_instruction(migraphx::make_op("multibroadcast", 
                {{"out_dyn_dims", migraphx::to_value(dist_shape)}}), args[0], temp);

            auto zap = rand_dummy->get_shape();
            printf("hello %d\n", zap.ndim());
        }
        else
        {
            // use literal
            size_t batch_size = s0.lens().front();
            dist_shape = {output_type, {batch_size, sample_size}};
            rand_dummy = info.add_literal(migraphx::literal{dist_shape, {batch_size, sample_size}});



            // mul_random = info.add_instruction(migraphx::make_op("multibroadcast", 
            //     {{"out_lens", migraphx::to_value(dist_shape)}}), args[0]);
            // migraphx::shape dist_shape{migraphx::shape::float_type, {batch_size, sample_size}};
        }



        // auto mul_random = info.add_instruction(migraphx::make_op("multibroadcast"
        // ,{{"out_dyn_dims", migraphx::to_value(b)}}
        // ), s0, dist_shape);

        uint32_t seed(0);
        if(contains(info.attributes, "seed"))
            seed = info.attributes.at("seed").i();
turneram's avatar
turneram committed
107

108
109
110
111
112
// how to populate data when dist_shape is dynamic?  Answer: just send dist_shape`
    // std::vector<float> data(dist_shape.elements(), 0.f);
    // auto dummy              = info.add_literal(migraphx::literal(dist_shape, data));
    auto randoms = info.add_instruction(migraphx::make_op("rand_uniform", {{"seed", seed}}), rand_dummy);
       
turneram's avatar
turneram committed
113
114

        return info.add_instruction(
115
            migraphx::make_op("multinomial", {{"dtype", output_type}}), cdf, randoms);
turneram's avatar
turneram committed
116
117
118
119
120
121
    }
};

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx