layernorm.cpp 8.01 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
kahmed10's avatar
kahmed10 committed
24
25
26
27
28
29
30
31
32
33
#include <migraphx/gpu/device/layernorm.hpp>
#include <migraphx/gpu/device/reduce.hpp>
#include <migraphx/gpu/device/pow.hpp>
#include <migraphx/gpu/device/fast_div.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {

kahmed10's avatar
kahmed10 committed
34
35
36
37
38
39
40
41
#ifndef MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC
#if __AMDGCN_WAVEFRONT_SIZE == 32
#define MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC 1
#else
#define MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC 0
#endif
#endif

42
43
44
45
46
47
48
49
50
51
52
53
54
55
template <class T>
struct vector_type
{
};

template <class T, index_int N>
struct vector_type<vec<T, N>>
{
    using type = T;
};

template <class T>
using vector_type_t = typename vector_type<T>::type;

Paul Fultz II's avatar
Paul Fultz II committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
template <class T>
struct vector_size : std::integral_constant<index_int, 1>
{
};

template <class T, index_int N>
struct vector_size<vec<T, N>> : std::integral_constant<index_int, N>
{
};

template <class T, class F>
__device__ auto vec_transform(T x, F f)
{
    return f(x);
}

template <class T, index_int N, class F>
__device__ auto vec_transform(vec<T, N> x, F f)
{
    vec<T, N> y = x;
    // cppcheck-suppress useStlAlgorithm
    for(index_int k = 0; k < N; k++)
        y[k] = f(x[k]);
    return y;
}

template <class T, class U, class Op>
__device__ auto vec_reduce(T x, U, Op)
{
    return x;
}

template <class T, index_int N, class U, class Op>
__device__ auto vec_reduce(vec<T, N> x, U init, Op op)
{
    T r = init;
    for(index_int k = 0; k < N; k++)
        r = op(r, x[k]);
    return r;
}

template <index_int N, class Op, class T, class F>
__device__ auto auto_block_reduce(index idx, Op op, T init, index_int n, F f)
{
    auto r = block_reduce<N>(idx, op, init, n, f);
    return vec_reduce(r, 0, op);
}

template <index_int MaxBlockSize, class Input, class Output>
__device__ void layernorm(index_int i,
                          index idx,
                          std::size_t block_size_div,
                          index_int relements,
                          Input input,
                          Output output)
{
    using value_type       = decltype(input(idx.local));
    const auto relements_v = relements / vector_size<value_type>{};
    const auto out_idx     = fast_div(i, block_size_div);
    const auto base_idx    = out_idx * relements_v;
    const auto input_idx   = base_idx + idx.local;
    const bool in_range    = idx.local < relements_v;

    auto mean = [&](auto z) {
kahmed10's avatar
kahmed10 committed
120
121
122
123
124
125
126
        auto m = auto_block_reduce<MaxBlockSize>(
                     idx, sum{}, value_type(0), relements_v, [=](auto) { return z; }) /
                 value_type(relements);
#if MIGRAPHX_WORKAROUND_NAVI_DPP_SYNC
        __builtin_amdgcn_s_barrier();
#endif
        return m;
Paul Fultz II's avatar
Paul Fultz II committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    };

    // m = x - mean(x)
    value_type x = in_range ? input(input_idx) : 0;
    value_type m = x - mean(x);

    // mean(m ^ 2) + 1e-12
    value_type r = mean(m * m) + value_type(1e-12);

    // m * rsqrt(mean(m ^ 2) + 1e-12)
    if(in_range)
        output(input_idx, m * vec_transform(r, &rsqrt));
}

kahmed10's avatar
kahmed10 committed
141
142
// m = x - mean(x)
// m / sqrt(mean(m ^ 2) + 1e-12)
143

Paul Fultz II's avatar
Paul Fultz II committed
144
template <index_int N, class Input, class Output, class... Arguments>
145
146
void layernorm_vec_impl(hipStream_t stream,
                        index_int nelements,
Paul Fultz II's avatar
Paul Fultz II committed
147
148
149
150
151
                        index_int relements,
                        Input in,
                        Output out,
                        const argument& result,
                        const Arguments&... args)
kahmed10's avatar
kahmed10 committed
152
{
Paul Fultz II's avatar
Paul Fultz II committed
153
    hip_vec_visit_all<N>(result, args...)([&](auto output, auto... inputs) {
154
155
156
157
158
159
160
        const auto relements_v           = relements / N;
        const std::size_t max_block_size = 256;
        const std::size_t block_size     = compute_block_size(relements_v, max_block_size);
        const std::size_t block_size_div = encode_divisor(block_size);
        assert(relements_v <= block_size);

        gs_launch(stream, nelements * block_size, block_size)([=](auto i, auto idx) __device__ {
Paul Fultz II's avatar
Paul Fultz II committed
161
162
163
164
165
166
167
168
169
            layernorm<max_block_size>(
                i,
                idx,
                block_size_div,
                relements,
                [&](auto input_idx) { return in(inputs.data()[input_idx]...); },
                [&](auto input_idx, auto x) {
                    out(x, output.data()[input_idx], inputs.data()[input_idx]...);
                });
170
171
172
173
        });
    });
}

Paul Fultz II's avatar
Paul Fultz II committed
174
template <class Input, class Output, class... Arguments>
175
176
void layernorm_impl(hipStream_t stream,
                    index_int nelements,
Paul Fultz II's avatar
Paul Fultz II committed
177
178
179
180
181
                    index_int relements,
                    Input in,
                    Output out,
                    const argument& result,
                    const Arguments&... args)
182
{
Paul Fultz II's avatar
Paul Fultz II committed
183
    hip_visit_all(result, args...)([&](auto output, auto... inputs) {
kahmed10's avatar
kahmed10 committed
184
185
186
        const std::size_t max_block_size = 256;
        const std::size_t block_size     = compute_block_size(relements, max_block_size);
        const std::size_t block_size_div = encode_divisor(block_size);
187
        assert(relements <= block_size);
kahmed10's avatar
kahmed10 committed
188
189

        gs_launch(stream, nelements * block_size, block_size)([=](auto i, auto idx) __device__ {
Paul Fultz II's avatar
Paul Fultz II committed
190
191
192
193
194
195
196
197
198
            layernorm<max_block_size>(
                i,
                idx,
                block_size_div,
                relements,
                [&](auto input_idx) { return in(inputs.data()[input_idx]...); },
                [&](auto input_idx, auto x) {
                    out(x, output.data()[input_idx], inputs.data()[input_idx]...);
                });
kahmed10's avatar
kahmed10 committed
199
200
201
202
        });
    });
}

Paul Fultz II's avatar
Paul Fultz II committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
template <class... Arguments>
auto layernorm_fusion(hipStream_t stream,
                      const argument& result,
                      const argument& arg1,
                      const Arguments&... args)
{
    return [=](auto input, auto output) {
        auto relements    = arg1.get_shape().lens().back();
        auto nelements    = result.get_shape().elements() / relements;
        auto output_shape = result.get_shape();
        auto reduce_output_lens(output_shape.lens());
        reduce_output_lens.back() = 1;

        if((relements % 4) == 0)
            layernorm_vec_impl<4>(
                stream, nelements, relements, input, output, result, arg1, args...);
        else if(relements < 256)
            layernorm_impl(stream, nelements, relements, input, output, result, arg1, args...);
        else
            MIGRAPHX_THROW("No kernel for layernorm");
    };
}

void triadd_layernorm(hipStream_t stream,
                      const argument& result,
                      const argument& arg1,
                      const argument& arg2,
                      const argument& arg3)
{
    layernorm_fusion(stream, result, arg1, arg2, arg3)(
        [](auto x, auto y, auto z) { return x + y + z; }, [](auto x, auto& y, auto...) { y = x; });
}

236
237
void layernorm(hipStream_t stream, const argument& result, const argument& arg1)
{
Paul Fultz II's avatar
Paul Fultz II committed
238
239
    layernorm_fusion(stream, result, arg1)([](auto x) { return x; },
                                           [](auto x, auto& y, auto) { y = x; });
240
241
}

kahmed10's avatar
kahmed10 committed
242
243
244
245
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx