cpu_target.cpp 7.88 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6

#include <rtg/cpu/cpu_target.hpp>
#include <rtg/instruction.hpp>
#include <rtg/dfor.hpp>
#include <rtg/operators.hpp>

Paul's avatar
Paul committed
7
8
namespace rtg {
namespace cpu {
Paul's avatar
Paul committed
9

10
11
12
template <typename T>
T zero(const T& x) { return T(0); }

Paul's avatar
Paul committed
13
14
15
16
struct cpu_convolution
{
    convolution op;

Paul's avatar
Paul committed
17
18
    std::string name() const { return "cpu::convolution"; }
    shape compute_shape(std::vector<shape> inputs) const { return op.compute_shape(inputs); }
Paul's avatar
Paul committed
19
    argument compute(shape output_shape, std::vector<argument> args) const
Paul's avatar
Paul committed
20
    {
Paul's avatar
Paul committed
21
        argument result{output_shape};
Paul's avatar
Paul committed
22
23
24
25
26
        visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
            auto in_n = input.get_shape().lens()[0];
            auto in_c = input.get_shape().lens()[1];
            auto in_h = input.get_shape().lens()[2];
            auto in_w = input.get_shape().lens()[3];
Paul's avatar
Paul committed
27

Paul's avatar
Paul committed
28
29
30
            auto wei_c = weights.get_shape().lens()[1];
            auto wei_h = weights.get_shape().lens()[2];
            auto wei_w = weights.get_shape().lens()[3];
Paul's avatar
Paul committed
31

Paul's avatar
Paul committed
32
33
34
35
            dfor(in_n, in_c, in_h, in_w)(
                [&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
                    const int start_x = i * op.stride[0] - op.padding[0];
                    const int start_y = j * op.stride[1] - op.padding[1];
Paul's avatar
Paul committed
36

Paul's avatar
Paul committed
37
38
39
40
41
42
43
44
45
46
                    double acc = 0;
                    dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
                        const int in_x = start_x + x;
                        const int in_y = start_y + y;
                        if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
                        {
                            acc += input(o, k, in_x, in_y) * weights(w, k, x, y);
                        }
                    });
                    output(o, w, i, j) = acc;
Paul's avatar
Paul committed
47
48
49
50
51
52
                });
        });
        return result;
    }
};

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
struct cpu_gemm
{
    gemm op;
    std::string name() const { return "cpu::gemm"; }
    shape compute_shape(std::vector<shape> inputs) 
    {
        return op.compute_shape(inputs);
    }

    argument compute(shape output_shape, std::vector<argument> args) const 
    {
        argument C{output_shape};
        visit_all(C, args[0], args[1])([&](auto C, auto A, auto B) {
            auto M = A.get_shape().lens()[0];
            auto N = B.get_shape().lens()[1];
            auto K = B.get_shape().lens()[0];

            auto a = A.data();
            auto b = B.data();
            auto c = C.data();
            for (int ii = 0; ii < M; ii++) {
              for (int jj = 0; jj < N; jj++) {
                c[ii*N+jj] = 0;
              }
            }
            for (int ii = 0; ii < M; ii++) {
              for (int kk = 0; kk < K; kk++) {
                auto aik = a[ii*K+kk];
                auto* bkj = &b[kk*N];
                auto* cij = &c[ii*N];
                for (int jj = 0; jj < N; jj++, cij++, bkj++) {
                  *cij += aik*(*bkj);
                }
              }
            }
        });
89
        return C;
90
91
92
    }
};

93
struct identity_op
Paul's avatar
Paul committed
94
{
95
96
97
    std::string name() const {return "cpu::identity"; }
    auto fcn() { return [](auto x) { return x; }; }
};
Paul's avatar
Paul committed
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
struct abs_op 
{
    std::string name() const {return "cpu::abs"; }
    auto fcn() { return [](auto x) { return std::abs(x); }; }
};

struct exp_op 
{
    std::string name() const {return "cpu::exp"; }
    auto fcn() { return [](auto x) { return std::exp(x); }; }
};

struct sin_op 
{
    std::string name() const {return "cpu::sin"; }
    auto fcn() { return [](auto x) { return std::sin(x); }; }
};

struct cos_op 
{
    std::string name() const {return "cpu::cos"; }
    auto fcn() { return [](auto x) { return std::cos(x); }; }
};

struct tan_op 
{
    std::string name() const {return "cpu::tan"; }
    auto fcn() { return [](auto x) { return std::tan(x); }; }
};

struct asin_op 
{
    std::string name() const {return "cpu::asin"; }
    auto fcn() { return [](auto x) { return std::asin(x); }; }
};

struct acos_op 
{
    std::string name() const {return "cpu::acos"; }
    auto fcn() { return [](auto x) { return std::acos(x); }; }
};

struct atan_op 
{
    std::string name() const {return "cpu::atan"; }
    auto fcn() { return [](auto x) { return std::atan(x); }; }
};

struct tanh_op
{
    std::string name() const {return "cpu::tanh"; }
    auto fcn() { return [](auto x) { return std::tanh(x); }; }
};

struct sigmoid_op
{
    std::string name() const {return "cpu::sigmoid"; }
    auto fcn() { return [](auto x) { return 1.f/(1.f + std::exp(-x)); }; }
};

struct neg_op
{
    std::string name() const {return "cpu::neg"; }
    auto fcn() { return [](auto x) { return -x; }; }
};

struct relu_op
{
    std::string name() const {return "cpu::relu"; }
    auto fcn() const { return [](auto x) { return x > 0 ? x : 0; }; }
};

template <typename Op>
struct cpu_unary
{
  Op op;
175
  std::string name() const { return op.name(); }
176
177
178
179
180
181
182
183
184
  shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
  argument compute(shape output_shape, std::vector<argument> args) const
  {
      argument result{output_shape};
      result.visit([&](auto output) {
          args[0].visit([&](auto input) {
              std::transform(input.begin(), input.end(), output.begin(), op.fcn());
          });
      });
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
      return result;
  }
};

struct softmax
{
  std::string name() const { return "cpu::softmax"; }
  shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
  argument compute(shape output_shape, std::vector<argument> args) const
  {
      argument result{output_shape};
      result.visit([&](auto output) {
          args[0].visit([&](auto input) {
              std::transform(input.begin(), input.end(), output.begin(), 
                  [](auto x) { return std::exp(x); });
              float t = std::accumulate(output.begin(), output.end(), zero(input.front()));
              std::transform(output.begin(), output.end(), output.begin(), 
                  [t](auto x) { return x/t; });
          });
      });
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
      return result;
  }
};

struct add_op
{
    std::string name() const { return "add"; }
    auto fcn() const { return [](auto x, auto y) {return x + y;};}
};

struct sub_op
{
    std::string name() const { return "sub"; }
    auto fcn() const { return [](auto x, auto y) {return x - y;};}
};

struct mul_op
{
    std::string name() const { return "mul"; }
    auto fcn() const { return [](auto x, auto y) {return x * y;};}
};

struct div_op
{
    std::string name() const { return "div"; }
    auto fcn() const { return [](auto x, auto y) {return x / y;};}
};

template <typename Op>
struct cpu_binary
{
  Op op;
  std::string name() const { op.name(); }
  shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
  argument compute(shape output_shape, std::vector<argument> args) const
  {
      argument result{output_shape};
      visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
          std::transform(input1.begin(), input1.end(), input2.begin(), output.begin(), op.fcn());
          });
      return result;
  }
Paul's avatar
Paul committed
247
248
249
250
};

struct cpu_apply
{
Paul's avatar
Paul committed
251
    program* prog;
Paul's avatar
Paul committed
252
253
254

    void apply()
    {
Paul's avatar
Paul committed
255
256
257
258
        for(auto it = prog->begin(); it != prog->end(); it++)
        {
            if(it->op.name() == "convolution")
            {
Paul's avatar
Paul committed
259
                apply_convolution(it);
Paul's avatar
Paul committed
260
261
262
            }
            else if(it->op.name() == "activation")
            {
Paul's avatar
Paul committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
                apply_activation(it);
            }
        }
    }

    void apply_convolution(instruction_ref ins)
    {
        auto&& op = any_cast<convolution>(ins->op);
        prog->replace_instruction(ins, cpu_convolution{op}, ins->arguments);
    }

    void apply_activation(instruction_ref ins)
    {
        auto&& op = any_cast<activation>(ins->op);
        if(op.mode == "relu")
278
            prog->replace_instruction(ins, cpu_unary<relu_op>{}, ins->arguments);
Paul's avatar
Paul committed
279
280
281
    }
};

Paul's avatar
Paul committed
282
std::string cpu_target::name() const { return "cpu"; }
Paul's avatar
Paul committed
283

Paul's avatar
Paul committed
284
void cpu_target::apply(program& p) const { cpu_apply{&p}.apply(); }
Paul's avatar
Paul committed
285
286
287
288

} // namespace cpu

} // namespace rtg