schedule_model.cpp 4.01 KB
Newer Older
Paul's avatar
Paul committed
1
#include <migraphx/gpu/schedule_model.hpp>
Paul's avatar
Paul committed
2
#include <migraphx/gpu/context.hpp>
Paul's avatar
Paul committed
3
#include <migraphx/program.hpp>
4
#include <migraphx/instruction.hpp>
Paul's avatar
Paul committed
5
6
7
8
9
10
#include <migraphx/operation.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {

Paul's avatar
Paul committed
11
12
13
14
15
using hip_event_ptr = MIGRAPHX_MANAGE_PTR(hipEvent_t, hipEventDestroy);

hip_event_ptr create_event()
{
    hipEvent_t event;
Paul's avatar
Paul committed
16
    // Default is hipEventReleaseToDevice
Paul's avatar
Paul committed
17
18
    auto status = hipEventCreateWithFlags(
        &event, hipEventDisableTiming | hipEventReleaseToSystem | hipEventBlockingSync);
Paul's avatar
Paul committed
19
20
21
22
23
24
25
26
    if(status != hipSuccess)
        MIGRAPHX_THROW("Failed to create event");
    return hip_event_ptr{event};
}

struct wait_event
{
    std::vector<std::size_t> wait_for;
Paul's avatar
Paul committed
27
    shared<hip_event_ptr> event = nullptr;
Paul's avatar
Paul committed
28
29
30
31
32
33
34
35
36
37
38
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.wait_for, "wait_for"));
    }
    std::string name() const { return "gpu::wait_event"; }
    shape compute_shape(const std::vector<shape>&) const { return {}; }

    argument compute(context& ctx, const shape&, const std::vector<argument>&) const
    {
        assert(event != nullptr);
Paul's avatar
Paul committed
39
40
41
        assert(std::none_of(wait_for.begin(), wait_for.end(), [&](auto i) {
            return i == ctx.get_current_device().stream_id();
        }));
Paul's avatar
Paul committed
42
        for(auto n : wait_for)
Paul's avatar
Paul committed
43
44
45
46
47
            ctx.get_stream(n).record(event.get());
        ctx.get_stream().wait(event.get());
        return {};
    }

Paul's avatar
Paul committed
48
    void finalize(context& ctx, const shape&, std::vector<shape>)
Paul's avatar
Paul committed
49
    {
Paul's avatar
Paul committed
50
51
52
        assert(std::none_of(wait_for.begin(), wait_for.end(), [&](auto i) {
            return i == ctx.get_current_device().stream_id();
        }));
53
        (void)ctx;
Paul's avatar
Paul committed
54
        event = create_event();
Paul's avatar
Paul committed
55
    }
Paul's avatar
Paul committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
};

struct set_stream
{
    std::size_t stream = 0;
    template <class Self, class F>
    static auto reflect(Self& self, F f)
    {
        return pack(f(self.stream, "stream"));
    }
    std::string name() const { return "gpu::set_stream"; }
    shape compute_shape(const std::vector<shape>&) const { return {}; }

    argument compute(context& ctx, const shape&, const std::vector<argument>&) const
    {
        ctx.set_stream(stream);
        return {};
    }
    void finalize(context& ctx, const shape&, const std::vector<shape>&) { ctx.set_stream(stream); }
};

77
std::size_t schedule_model::concurrency() const { return streams; }
Paul's avatar
Paul committed
78
void schedule_model::schedule_instruction(program& p, instruction_ref ins, std::size_t n) const
Paul's avatar
Paul committed
79
{
Paul's avatar
Paul committed
80
81
82
83
    auto last_stream = std::find_if(std::make_reverse_iterator(ins),
                                    std::make_reverse_iterator(p.begin()),
                                    [&](auto&& i) { return i.name() == "gpu::set_stream"; });
    if(last_stream != std::make_reverse_iterator(p.begin()))
84
85
86
    {
        auto&& op = any_cast<set_stream>(last_stream->get_operator());
        // If the same stream was set earlier then skip
Paul's avatar
Paul committed
87
        if(op.stream == n)
88
89
            return;
    }
Paul's avatar
Paul committed
90
91
    p.insert_instruction(ins, set_stream{n});
}
Paul's avatar
Paul committed
92
93
94
95
void schedule_model::wait(program& p,
                          instruction_ref ins,
                          std::size_t wait_on,
                          const std::vector<std::size_t>& wait_for) const
Paul's avatar
Paul committed
96
{
97
    this->schedule_instruction(p, ins, wait_on);
Paul's avatar
Paul committed
98
99
100
101
102
103
    p.insert_instruction(ins, wait_event{wait_for});
}

static std::unordered_map<std::string, std::size_t> create_weight_map()
{
    return {
Paul's avatar
Paul committed
104
        {"hip::load_literal", 0},
Paul's avatar
Paul committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        {"hip::allocate", 0},
        {"gpu::convolution", 4},
        {"gpu::conv_bias_relu", 4},
        {"gpu::pooling", 2},
        {"gpu::gemm", 2},
        {"gpu::concat", 1},
        {"hip::add_relu", 2},
    };
}

static const std::unordered_map<std::string, std::size_t>& weight_map()
{
    static std::unordered_map<std::string, std::size_t> m = create_weight_map();
    return m;
}

Paul's avatar
Paul committed
121
std::size_t schedule_model::weight(const operation& op) const
Paul's avatar
Paul committed
122
{
Paul's avatar
Paul committed
123
    if(weight_map().count(op.name()) == 0)
124
125
126
    {
        return 1;
    }
Paul's avatar
Paul committed
127
    return weight_map().at(op.name());
Paul's avatar
Paul committed
128
129
130
131
}

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
132
} // namespace migraphx