ck_gemm.cpp 16.8 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/*
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <fstream>
#include <filesystem>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>

Paul's avatar
Paul committed
30
31
#include <migraphx/env.hpp>
#include <migraphx/file_buffer.hpp>
Paul's avatar
Paul committed
32
#include <migraphx/gpu/compile_gen.hpp>
Paul's avatar
Paul committed
33
34
35
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/module.hpp>
Paul's avatar
Paul committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>

#include "ck/host/device_gemm_multiple_d.hpp"

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

namespace gpu {

using namespace migraphx::gpu::gen; // NOLINT

MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_LOG_CK_GEMM);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_TUNING);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_TUNING_VALUE);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_DEBUG);

// NOLINTNEXTLINE
static const char* const ck_gemm_kernel = R"__migraphx__(
#include <args.hpp>
#include <migraphx/kernels/ck_gemm.hpp>
#include <migraphx/kernels/pointwise.hpp>
Paul's avatar
Paul committed
59
#include <migraphx/kernels/ops.hpp>
Paul's avatar
Paul committed
60
#include <${include}>
Paul's avatar
Paul committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

namespace migraphx {

${preamble}

extern "C" {

__global__ void ${kernel}(${params})
{
    transform_args(make_tensors(), rotate_last())(${args})([](auto... xs) {
        ck_gemm<${solution}, ${blocks_per_batch}>(xs...);
    });
}

}

} // namespace migraphx

)__migraphx__";

Paul's avatar
Paul committed
81
82
83
84
85
86
87
88
// NOLINTNEXTLINE
static const char* const disable_warning_pragma = R"__migraphx__(
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Weverything"
${content}
#pragma clang diagnostic pop
)__migraphx__";

Paul's avatar
Format  
Paul committed
89
template <class P>
Paul's avatar
Paul committed
90
91
static std::string ck_disable_warnings(P p)
{
Paul's avatar
Format  
Paul committed
92
93
    return interpolate_string(disable_warning_pragma,
                              {{"content", std::string{p.first, p.second}}});
Paul's avatar
Paul committed
94
95
96
97
98
99
100
}

static std::unordered_map<std::string, std::string> create_ck_header_strings()
{
    std::unordered_map<std::string, std::string> result;
    auto ck_headers = ck::host::GetHeaders();

Paul's avatar
Format  
Paul committed
101
102
103
104
    std::transform(
        ck_headers.begin(), ck_headers.end(), std::inserter(result, result.begin()), [&](auto&& p) {
            return std::make_pair(p.first, ck_disable_warnings(p.second));
        });
Paul's avatar
Paul committed
105
106
107
108
109
110
111
    return result;
}

static std::vector<src_file> create_ck_headers()
{
    static const auto& header_strings = create_ck_header_strings();
    std::vector<src_file> srcs;
Paul's avatar
Format  
Paul committed
112
113
114
115
116
    std::transform(
        header_strings.begin(), header_strings.end(), std::back_inserter(srcs), [&](auto&& p) {
            return src_file{fs::path{p.first},
                            {p.second.data(), p.second.data() + p.second.size()}};
        });
Paul's avatar
Paul committed
117
118
119
120
121
122
123
124
125
    return srcs;
}

static const std::vector<src_file>& ck_headers()
{
    static const auto& headers = create_ck_headers();
    return headers;
}

Paul's avatar
Paul committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
static bool transposed_matrix(const shape& s) { return s.strides().back() != 1; }

using tuning_entry = std::pair<std::vector<shape>, size_t>;
static std::vector<tuning_entry> read_tuning(const std::string& s)
{
    if(not fs::exists(s))
        return {};
    return from_value<std::vector<tuning_entry>>(from_json_string(read_string(s)));
}

static float matrix_distance(const shape& x, const shape& y)
{
    if(x.type() != y.type())
        return std::numeric_limits<float>::max();
    if(transposed_matrix(x) != transposed_matrix(y))
        return std::numeric_limits<float>::max();
    auto sum_squared = std::inner_product(x.lens().rbegin(),
                                          x.lens().rbegin() + 2,
                                          y.lens().rbegin(),
                                          0,
                                          std::plus<>{},
                                          [](auto a, auto b) { return (a - b) * (a - b); });
    return std::sqrt(sum_squared);
}

static std::size_t get_tuning_for(const std::vector<shape>& inputs)
{
    static auto tuning = read_tuning(string_value_of(MIGRAPHX_CK_TUNING{}, ""));
    if(tuning.empty())
    {
        std::cout << "*********** Warning: No CK tuning! for config:" << std::endl;
        std::cout << "  " << inputs[0] << std::endl;
        std::cout << "  " << inputs[1] << std::endl;
        std::cout << "  " << inputs[2] << std::endl;
    }
    auto it = std::find_if(
        tuning.begin(), tuning.end(), [&](const auto& p) { return p.first == inputs; });
    if(it == tuning.end())
    {
        std::cout << "*********** Warning: CK tuning missing for config!" << std::endl;
        std::cout << "  " << inputs[0] << std::endl;
        std::cout << "  " << inputs[1] << std::endl;
        std::cout << "  " << inputs[2] << std::endl;
        std::vector<std::pair<float, std::size_t>> w;
        std::transform(tuning.begin(), tuning.end(), std::back_inserter(w), [&](const auto& p) {
            if(inputs.size() < 3 or p.first.size() < 3)
                MIGRAPHX_THROW("Invalid CK config");
            auto avg_distance = std::inner_product(
                p.first.begin(),
                p.first.begin() + 3,
                inputs.begin(),
                0.0f,
                std::plus<>{},
                [](const auto& x, const auto& y) { return matrix_distance(x, y) / 3.0f; });
            return std::make_pair(avg_distance, p.second);
        });
        std::sort(w.begin(), w.end());
        std::size_t default_value = 4;
        if(not w.empty())
            default_value = w.front().second;
        auto tuning_val = value_of(MIGRAPHX_CK_TUNING_VALUE{}, default_value);
        std::cout << "*********** Warning: CK try tuning: " << tuning_val << std::endl;
        return tuning_val;
    }
    return it->second;
}

struct ck_gemm_compiler : compiler<ck_gemm_compiler>
{
    static std::string get_layout(const shape& s)
    {
        return transposed_matrix(s) ? "ck::tensor_layout::gemm::ColumnMajor"
                                    : "ck::tensor_layout::gemm::RowMajor";
    }

    static ck::host::DataType get_type(const shape& s)
    {
        if(s.type() == shape::half_type)
            return ck::host::DataType::Half;
        else if(s.type() == shape::float_type)
            return ck::host::DataType::Float;
        else if(s.type() == shape::int8_type)
            return ck::host::DataType::Int8;
        else if(s.type() == shape::int32_type)
            return ck::host::DataType::Int32;
        MIGRAPHX_THROW("Unsupported ck type");
    }

    template <class Iterator, class F>
    static std::string ck_tuple(Iterator start, Iterator last, F f)
    {
        std::vector<std::string> s;
        std::transform(start, last, std::back_inserter(s), f);
        return "ck::Tuple<" + join_strings(s, ",") + ">";
    }

    static std::vector<shape> adjust_inputs(std::vector<shape> inputs, bool& swap_inputs)
    {
        swap_inputs  = false;
        auto c_shape = inputs.back();
        if(not transposed_matrix(c_shape))
            return inputs;
        std::vector<int64_t> perm(c_shape.lens().size());
        std::iota(perm.begin(), perm.end(), 0);
        std::swap(perm[perm.size() - 1], perm[perm.size() - 2]);
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](shape s) {
            return reorder_shape(s, perm);
        });
        swap_inputs = true;
        return inputs;
    }

    static std::size_t get_batch_count(const shape& s)
    {
        return std::accumulate(
            s.lens().rbegin() + 2, s.lens().rend(), std::size_t{1}, std::multiplies<std::size_t>());
    }

    static void fold_batch_dims(shape& s)
    {
        auto lens = s.lens();
        if(lens.size() <= 2)
            return;
        auto batch_count = get_batch_count(s);
        auto m1          = lens.at(lens.size() - 2);
        auto m2          = lens.at(lens.size() - 1);
        if(transposed_matrix(s))
            s = shape{s.type(), {m1, m2 * batch_count}};
        else
            s = shape{s.type(), {m1 * batch_count, m2}};
    }

    static void remove_batch_dims(shape& s)
    {
        auto lens = s.lens();
        if(lens.size() <= 2)
            return;
        auto m1 = lens.at(lens.size() - 2);
        auto m2 = lens.at(lens.size() - 1);
        s       = shape{s.type(), {m1, m2}};
    }

Paul's avatar
Format  
Paul committed
268
    std::vector<std::string> names() const { return {"ck_gemm", "gpu::ck_gemm"}; }
Paul's avatar
Paul committed
269

Paul's avatar
Paul committed
270
271
    bool can_fold_batch(const std::vector<shape>& inputs) const
    {
Paul's avatar
Format  
Paul committed
272
        const auto& b_shape = inputs[1];
Paul's avatar
Paul committed
273
274
275
276
277
278
279
280
        if(std::any_of(inputs.begin() + 2, inputs.end()-1, [](auto input) {
            return input.broadcasted();
        }))
            return false;
        const auto& b_strides = b_shape.strides();
        return std::all_of(b_strides.begin(), b_strides.end() - 3, [](auto stride) {
            return stride == 0;
        });
Paul's avatar
Paul committed
281
282
    }

Paul's avatar
Format  
Paul committed
283
284
    ck::host::device_gemm_multiple_d::Problem create_problem(const std::vector<shape>& inputs,
                                                             const value& v) const
Paul's avatar
Paul committed
285
    {
Paul's avatar
Paul committed
286
287
288
        const auto& a_shape = inputs[0];
        const auto& b_shape = inputs[1];
        const auto& c_shape = inputs.back();
Paul's avatar
Paul committed
289

Paul's avatar
Format  
Paul committed
290
291
        auto rank = a_shape.lens().size();

Paul's avatar
Paul committed
292
293
        auto batch_count = get_batch_count(c_shape);
        auto m           = c_shape.lens()[rank - 2];
Paul's avatar
Paul committed
294
        m                = can_fold_batch(inputs) ? m * batch_count : m;
Paul's avatar
Paul committed
295
296
297
        auto n           = c_shape.lens().back();
        auto k           = a_shape.lens().back();

Paul's avatar
Paul committed
298
299
300
        const bool trans_a = transposed_matrix(a_shape);
        const bool trans_b = transposed_matrix(b_shape);
        const bool trans_e = transposed_matrix(c_shape);
Paul's avatar
Format  
Paul committed
301
302
303
        const auto a_type  = get_type(a_shape);
        const auto b_type  = get_type(b_shape);
        const auto e_type  = get_type(c_shape);
Paul's avatar
Paul committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
        std::vector<bool> ds_layout;
        std::transform(inputs.begin() + 2,
                       inputs.end() - 1,
                       std::back_inserter(ds_layout),
                       [](const auto& i) { return transposed_matrix(i); });
        std::vector<ck::host::DataType> ds_type;
        std::transform(inputs.begin() + 2,
                       inputs.end() - 1,
                       std::back_inserter(ds_type),
                       [](const auto& i) { return get_type(i); });

        std::string ck_passthrough = "ck_passthrough";
        std::string cde_op         = ck_passthrough;
        assert(inputs.size() < 4 or v.contains("post"));
        if(v.contains("post"))
        {
            cde_op = v.at("post").to<std::string>();
        }
Paul's avatar
Format  
Paul committed
322

Paul's avatar
Paul committed
323
        return ck::host::device_gemm_multiple_d::Problem{m,
Paul's avatar
Format  
Paul committed
324
325
                                                         n,
                                                         k,
Paul's avatar
Paul committed
326
327
328
                                                         trans_a,
                                                         trans_b,
                                                         trans_e,
Paul's avatar
Format  
Paul committed
329
330
331
332
333
334
335
336
                                                         ds_layout,
                                                         a_type,
                                                         b_type,
                                                         e_type,
                                                         ds_type,
                                                         ck_passthrough,
                                                         ck_passthrough,
                                                         cde_op};
Paul's avatar
Paul committed
337
338
    }

Paul's avatar
Paul committed
339
    operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
Paul's avatar
Paul committed
340
    {
Paul's avatar
Format  
Paul committed
341
342
343
344
        const auto& a_shape = inputs[0];
        const auto& b_shape = inputs[1];
        const auto& c_shape = inputs.back();
        auto tuning_value   = v.get("tuning_value", 4);
Paul's avatar
Paul committed
345
346
        if(not v.contains("tuning_value"))
            tuning_value = get_tuning_for({a_shape, b_shape, c_shape});
Paul's avatar
Format  
Paul committed
347
348
        auto batch_count = get_batch_count(c_shape);
        auto problem     = create_problem(inputs, v);
Paul's avatar
Paul committed
349
350

        const auto include_header   = problem.GetIncludeHeader();
Paul's avatar
Paul committed
351
        const auto solutions        = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
Paul's avatar
Format  
Paul committed
352
        const auto& solution        = solutions.at(tuning_value);
Paul's avatar
Paul committed
353
354
355
356
357
        const auto template_str     = solution.template_str;
        const auto blocks_per_batch = solution.grid_size;
        const auto block_size       = solution.block_size;

        hip_compile_options options;
Paul's avatar
Paul committed
358
        options.additional_src_files = ck_headers();
Paul's avatar
Paul committed
359
        auto grid_size = can_fold_batch(inputs) ? blocks_per_batch : batch_count * blocks_per_batch;
Paul's avatar
Paul committed
360
361
362
363
364
        options.set_launch_params(v, grid_size * block_size, block_size);
        options.inputs         = inputs;
        options.output         = c_shape;
        options.kernel_name    = v.get("kernel", "ck_gemm_kernel");
        options.virtual_inputs = inputs;
Paul's avatar
Paul committed
365
        if(can_fold_batch(inputs))
Paul's avatar
Paul committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        {
            auto vinputs = inputs;
            fold_batch_dims(vinputs[0]);
            remove_batch_dims(vinputs[1]);
            std::for_each(vinputs.begin() + 2, vinputs.end(), fold_batch_dims);
            options.virtual_inputs = vinputs;
        }

        if(v.get("check", false) or enabled(MIGRAPHX_CK_DEBUG{}))
            options.params += " -DMIGRAPHX_CK_CHECK=1";

        auto src = interpolate_string(ck_gemm_kernel,
                                      {{"solution", template_str},
                                       {"include", include_header},
                                       {"params", enum_params(inputs.size(), "void * private_p")},
                                       {"args", enum_params(inputs.size(), "private_p")},
                                       {"blocks_per_batch", to_string(blocks_per_batch)},
                                       {"preamble", v.get("preamble", std::string{})},
                                       {"kernel", options.kernel_name}});

        return compile_hip_code_object(src, options);
    }

Paul's avatar
Paul committed
389
    value create_settings(instruction_ref ins, const operation& op) const
Paul's avatar
Paul committed
390
391
392
393
394
395
396
397
398
399
400
    {
        auto v      = op.to_value();
        v["kernel"] = "ck_gemm_kernel";
        if(not ins->module_inputs().empty())
        {
            auto* pm      = ins->module_inputs().front();
            v["preamble"] = generate_pointwise(*pm, "post_ck_gemm_function") +
                            "\nMIGRAPHX_LIFT_CLASS(post_ck_gemm, post_ck_gemm_function);";
            v["post"]   = "ck_function_adaptor<post_ck_gemm>";
            v["kernel"] = "ck_gemm_" + generate_name_from_ops(*pm) + "_kernel";
        }
Paul's avatar
Paul committed
401
402
        return v;
    }
Paul's avatar
Paul committed
403

Paul's avatar
Format  
Paul committed
404
405
    compiler_replace
    compile(context& ctx, instruction_ref ins, const operation& op, const value& solution) const
Paul's avatar
Paul committed
406
    {
Paul's avatar
Format  
Paul committed
407
408
        auto shapes       = to_shapes(ins->inputs());
        auto v            = create_settings(ins, op);
Paul's avatar
Paul committed
409
410
        v["tuning_value"] = solution;
        return {compile_op(ctx, shapes, v),
Paul's avatar
Format  
Paul committed
411
412
413
414
415
416
417
418
419
420
                [=](module& m, instruction_ref ins2, const operation& code_object) {
                    if(enabled(MIGRAPHX_LOG_CK_GEMM{}))
                    {
                        std::vector<shape> gemm_shapes{
                            shapes[0], shapes[1], shapes.back().with_type(shapes[0].type())};
                        std::cout << "ck_gemm: " << to_json_string(to_value(gemm_shapes))
                                  << std::endl;
                    }
                    m.replace_instruction(ins2, code_object, ins2->inputs());
                }};
Paul's avatar
Paul committed
421
    }
Paul's avatar
Paul committed
422

Paul's avatar
Format  
Paul committed
423
424
    optional<tuning_config>
    get_tuning_config(context& ctx, instruction_ref ins, const operation& op) const
Paul's avatar
Paul committed
425
426
    {
        tuning_config tc;
Paul's avatar
Format  
Paul committed
427
428
        auto shapes    = to_shapes(ins->inputs());
        auto problem   = create_problem(shapes, create_settings(ins, op));
Paul's avatar
Paul committed
429
430
431
        auto solutions = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
        tc.solutions.resize(solutions.size());
        std::iota(tc.solutions.begin(), tc.solutions.end(), 0);
Paul's avatar
Format  
Paul committed
432
        std::vector<shape> gemm_shapes{shapes[0], shapes[1], shapes.back()};
Paul's avatar
Paul committed
433
        tc.problem = to_value(gemm_shapes);
Paul's avatar
Paul committed
434
435
        return tc;
    }
Paul's avatar
Paul committed
436
437
438
439
440
};

} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx