tf_parser.cpp 22 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <graph.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <unordered_set>
#include <functional>
#include <array>
#include <utility>
#include <vector>

#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/op/unknown.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
#include <migraphx/tf.hpp>
#include <migraphx/make_op.hpp>

#include <migraphx/tf/tf_parser.hpp>
#include <migraphx/tf/op_parser.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace tf {

bool tf_parser::should_transpose(instruction_ref ins) const
{
    return is_nhwc and ins->get_shape().lens().size() == 4;
}

instruction_ref tf_parser::to_nhwc(instruction_ref ins) const
{
    if(should_transpose(ins))
        return mm->add_instruction(make_op("transpose", {{"dims", {0, 2, 3, 1}}}), ins);
    return ins;
}

instruction_ref tf_parser::to_nchw(instruction_ref ins) const
{
    if(should_transpose(ins))
        return mm->add_instruction(make_op("transpose", {{"dims", {0, 3, 1, 2}}}), ins);
    return ins;
}

instruction_ref tf_parser::to_kcxy(instruction_ref ins) const
{
    return mm->add_instruction(make_op("transpose", {{"dims", {3, 2, 0, 1}}}), ins);
}

std::vector<instruction_ref> tf_parser::to_nchw(const std::vector<instruction_ref>& args) const
{
    std::vector<instruction_ref> result(args.size());
    std::transform(
        args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nchw(ins); });
    return result;
}

std::vector<instruction_ref> tf_parser::to_nhwc(const std::vector<instruction_ref>& args) const
{
    std::vector<instruction_ref> result(args.size());
    std::transform(
        args.begin(), args.end(), result.begin(), [&](auto ins) { return this->to_nhwc(ins); });
    return result;
}

instruction_ref tf_parser::node_info::make_contiguous(instruction_ref ins) const
{
    if(ins->get_shape().standard())
        return ins;
    else
        return mm->add_instruction(make_op("contiguous"), ins);
}

std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                  std::vector<std::size_t> s1)
{
    // Example:
    // s0 = (3,2,4,5) and s1 = (2,1,1)
    //
    // In this case we need to broadcast (:,1,1) portion of
    // s1 plus broadcast the 1st dimension of s1
    // giving output_lens = (3,2,4,5)
    //
    // Another example:
    // s0 = (3,2,1,5) and s1 = (2,7,5)
    // In this case we need to broadcast the (:,:,1:,:) axis
    // of s0 plus the 1st dimension of s1 giving
    // output_lens = (3,2,7,5)
    if(s0.size() > s1.size())
    {
        s0.swap(s1);
    }

    std::vector<std::size_t> out_lens(s1);
    auto offset = s1.size() - s0.size();
    std::transform(
        s0.begin(), s0.end(), s1.begin() + offset, out_lens.begin() + offset, [&](auto a, auto b) {
            if(a != b and a != 1 and b != 1)
            {
                MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" + to_string_range(s0) + "} and {" +
                               to_string_range(s1) + "} mismatch!");
            }
            return std::max(a, b);
        });

    return out_lens;
}

instruction_ref tf_parser::node_info::add_broadcastable_binary_op(const std::string& op_name,
                                                                  instruction_ref arg0,
                                                                  instruction_ref arg1) const
{
    if(arg0->get_shape().lens() != arg1->get_shape().lens())
    {
        // Get lengths for both arguments
        auto s0       = arg0->get_shape().lens();
        auto s1       = arg1->get_shape().lens();
        auto out_lens = compute_broadcasted_lens(s0, s1);

        auto l0 = arg0;
        if(arg0->get_shape().lens() != out_lens)
            l0 = add_instruction(make_op("multibroadcast", {{"output_lens", out_lens}}), arg0);

        auto l1 = arg1;
        if(arg1->get_shape().lens() != out_lens)
            l1 = add_instruction(make_op("multibroadcast", {{"output_lens", out_lens}}), arg1);

        return add_instruction(make_op(op_name), l0, l1);
    }
    else
    {
        return add_instruction(make_op(op_name), {arg0, arg1});
    }
}

int64_t tf_parser::parse_axis(const int64_t dim, const size_t num_dims) const
{
    int64_t new_dim = dim;
    if(is_nhwc and num_dims >= 4)
    {
        switch(dim)
        {
        case 0: new_dim = 0; break;
        case 1: new_dim = 2; break;
        case 2: new_dim = 3; break;
        case 3: new_dim = 1; break;
        default: break;
        }
    }
    return new_dim;
}

instruction_ref
tf_parser::node_info::add_instruction(const operation& op,
                                      const std::vector<instruction_ref>& args) const
{
    return mm->add_instruction(op, args);
}

instruction_ref tf_parser::node_info::add_literal(literal l) const
{
    return mm->add_literal(std::move(l));
}

std::vector<int64_t> get_axes_from_mask(const size_t num_axes, const uint32_t mask)
{
    uint32_t bitwise_compare = 1;
    std::vector<int64_t> axes;
    for(size_t i = 0; i < num_axes; i++)
    {
        // the LSB corresponds to axis 0 when determining which axes to begin
        if(((mask >> i) & bitwise_compare) == 1)
            axes.push_back(1);
        else
            axes.push_back(0);
    }
    return axes;
}

tf_parser::tf_parser()
{
    // Add all registered op parsers
    for(auto&& name : get_op_parsers())
        ops.emplace(name, get_op_parser(name));
}

static std::string get_name(const tensorflow::NodeDef& node) { return node.name(); }

static tf_parser::node_map get_nodes(const tensorflow::GraphDef& graph,
                                     std::vector<tensorflow::NodeDef>& input_nodes)
{
    tf_parser::node_map result;
    for(auto&& node : graph.node())
    {
        auto node_name = get_name(node);
        // assume each node in graph has an associated name
        if(node_name.empty())
            MIGRAPHX_THROW("tf node with no name found");
        result[node_name] = node;
        if(node.op() == "Placeholder")
        {
            input_nodes.push_back(node);
        }
    }
    return result;
}

static tf_parser::attribute_map get_attributes(const tensorflow::NodeDef& node)
{
    tf_parser::attribute_map result;
    for(auto&& attr : node.attr())
    {
        result[attr.first] = attr.second;
    }
kahmed10's avatar
kahmed10 committed
218

kahmed10's avatar
kahmed10 committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    return result;
}

static std::vector<size_t> parse_dims(const tensorflow::TensorShapeProto& s)
{
    std::vector<size_t> dims;
    auto input_dims = s.dim();
    std::transform(input_dims.begin(),
                   input_dims.end(),
                   std::back_inserter(dims),
                   [](const tensorflow::TensorShapeProto_Dim& dim) { return dim.size(); });
    return dims;
}

template <class T>
static std::vector<T> get_data_vals(const google::protobuf::RepeatedField<T>& data,
                                    const size_t& shape_size)
{
    std::vector<T> data_vals(shape_size);
    // check if shape has enough data values given existing fields
    if(data.size() == 1)
    {
        std::fill(data_vals.begin(), data_vals.end(), data[0]);
    }
    else
        copy(data.begin(), data.end(), std::back_inserter(data_vals));
    return data_vals;
}

template <class T>
static literal
create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, std::vector<T> data)
{
    // assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
    if(dims.empty() or (dims.size() == 1 and dims.front() == 1))
        return literal{{shape_type}, data};
    return literal{{shape_type, dims}, data};
}

kahmed10's avatar
kahmed10 committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
static bool is_valid_op(const tensorflow::NodeDef& node)
{
    std::vector<std::string> ignored{"NoOp", "Assert"};
    for(const auto& op : ignored)
    {
        const auto& name = get_name(node);
        if(node.op() == op or contains(name, op))
            return false;
    }
    return true;
}

std::vector<std::string> tf_parser::find_outputs() const
{
    std::unordered_set<std::string> inputs;
    for(auto&& p : nodes)
    {
        auto&& node = p.second;
        std::copy(node.input().begin(), node.input().end(), std::inserter(inputs, inputs.end()));
    }
    std::vector<std::string> outputs;
    for(auto&& p : nodes)
    {
        const auto& name = p.first;
        const auto& node = p.second;
        if(not is_valid_op(node))
            continue;
        // control flow related, ignore this node
        if(contains(name, "^"))
            continue;
        // literals are valid ops, but they are not outputs unless specified
        if(node.op() == "Const")
            continue;
        if(inputs.count(name) == 0)
            outputs.push_back(name);
    }
    return outputs;
}

kahmed10's avatar
kahmed10 committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
void tf_parser::parse_graph(const tensorflow::GraphDef& graph)
{
    nodes = get_nodes(graph, input_nodes);
    for(auto&& input : input_nodes)
    {
        const std::string& name   = input.name();
        attribute_map input_attrs = get_attributes(input);
        shape::type_t shape_type  = parse_type(input_attrs.at("dtype").type());
        std::vector<size_t> dims  = parse_dims(input_attrs.at("shape").shape());

        if(contains(map_input_dims, name))
        {
            dims = map_input_dims.at(name);
        }
        else
        {
            if(is_nhwc and dims.size() >= 4)
            {
                this->reorder_data(dims);
            }
            std::transform(dims.begin(), dims.end(), dims.begin(), [&](auto dim) {
                return static_cast<int>(dim) <= 0 ? batch_size : dim;
            });
        }

        shape s            = shape{shape_type, dims};
        instructions[name] = to_nhwc(mm->add_parameter(name, s));
    }
    for(auto&& p : nodes)
    {
        this->parse_node(p.first);
    }
kahmed10's avatar
kahmed10 committed
329
330
331
332
333
334
335
    auto last_ins = std::prev(mm->end());
    if(last_ins != mm->end())
    {
        // Needs to add a ret instruction at the end of
        // the program
        if(output_node_names.empty())
        {
kahmed10's avatar
kahmed10 committed
336
            output_node_names = find_outputs();
kahmed10's avatar
kahmed10 committed
337
        }
kahmed10's avatar
kahmed10 committed
338
339
340
341
342
343
344
345
346
347
348
349

        std::vector<instruction_ref> output_ins;
        std::transform(output_node_names.begin(),
                       output_node_names.end(),
                       std::back_inserter(output_ins),
                       [&](auto output_name) {
                           if(not contains(instructions, output_name))
                               MIGRAPHX_THROW("PARSE_TF: output name " + output_name +
                                              " not found in graph!");
                           return this->to_nchw(instructions[output_name]);
                       });
        mm->add_return(output_ins);
kahmed10's avatar
kahmed10 committed
350
    }
kahmed10's avatar
kahmed10 committed
351
352
353
354
355
356
357
}

void tf_parser::parse_node(const std::string& name)
{
    if(instructions.count(name) == 0)
    {
        auto&& node = nodes.at(name);
kahmed10's avatar
kahmed10 committed
358
        if(not is_valid_op(node))
kahmed10's avatar
kahmed10 committed
359
            return;
kahmed10's avatar
kahmed10 committed
360

kahmed10's avatar
kahmed10 committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
        std::vector<instruction_ref> args;

        for(auto&& input : node.input())
        {
            // control dependencies (signified by ^ before the name) are ignored
            if(contains(input, "^"))
                continue;
            if(nodes.count(input) > 0)
            {
                std::string iname;
                // input was from a node with multiple outputs
                if(contains(input, ':'))
                {
                    iname = input.substr(0, input.find(':'));
                }
                else
                {
                    iname = get_name(nodes.at(input));
                }
                assert(name != iname);
                this->parse_node(iname);
                args.push_back(instructions.at(input));
            }
            else
            {
                args.push_back(instructions.at(input));
            }
        }
        std::vector<instruction_ref> result;
        if(ops.count(node.op()) == 0)
        {
            result.push_back(mm->add_instruction(op::unknown{node.op()}, args));
        }
        else
        {
            result = ops[node.op()](*this, {get_attributes(node), node.op(), mm}, args);
        }
        assert(!result.empty());
        // First output has no ":" delimiter
        instructions[name] = result.front();
        for(size_t i = 1; i < result.size(); i++)
        {
            instructions[name + ":" + std::to_string(i)] = result.at(i);
        }
    }
}

void tf_parser::parse_from(std::istream& is)
{
    tensorflow::GraphDef graph;
    if(graph.ParseFromIstream(&is))
    {
        this->parse_graph(graph);
    }
    else
    {
        throw std::runtime_error("Failed reading tf file");
    }
}

shape::type_t tf_parser::parse_type(const tensorflow::DataType t) const
{
    shape::type_t shape_type{};
    switch(t)
    {
    case tensorflow::DataType::DT_FLOAT: shape_type = shape::float_type; break;
    case tensorflow::DataType::DT_DOUBLE: shape_type = shape::double_type; break;
    case tensorflow::DataType::DT_INT32: shape_type = shape::int32_type; break;
    case tensorflow::DataType::DT_INT16: shape_type = shape::int16_type; break;
    case tensorflow::DataType::DT_INT8: shape_type = shape::int8_type; break;
    case tensorflow::DataType::DT_INT64: shape_type = shape::int64_type; break;
    case tensorflow::DataType::DT_UINT16: shape_type = shape::uint16_type; break;
    case tensorflow::DataType::DT_HALF: shape_type = shape::half_type; break;
    case tensorflow::DataType::DT_UINT32: shape_type = shape::uint32_type; break;
    case tensorflow::DataType::DT_UINT64: shape_type = shape::uint64_type; break;

    case tensorflow::DataType::DT_INVALID:
    case tensorflow::DataType::DT_UINT8:
    case tensorflow::DataType::DT_STRING:
    case tensorflow::DataType::DT_COMPLEX64:
    case tensorflow::DataType::DT_BOOL:
    case tensorflow::DataType::DT_QINT8:
    case tensorflow::DataType::DT_QUINT8:
    case tensorflow::DataType::DT_QINT32:
    case tensorflow::DataType::DT_BFLOAT16:
    case tensorflow::DataType::DT_QINT16:
    case tensorflow::DataType::DT_QUINT16:
    case tensorflow::DataType::DT_COMPLEX128:
    case tensorflow::DataType::DT_RESOURCE:
    case tensorflow::DataType::DT_VARIANT:
    // tf pb should not use these types
    case tensorflow::DataType::DT_FLOAT_REF:
    case tensorflow::DataType::DT_DOUBLE_REF:
    case tensorflow::DataType::DT_INT32_REF:
    case tensorflow::DataType::DT_UINT8_REF:
    case tensorflow::DataType::DT_INT16_REF:
    case tensorflow::DataType::DT_INT8_REF:
    case tensorflow::DataType::DT_STRING_REF:
    case tensorflow::DataType::DT_COMPLEX64_REF:
    case tensorflow::DataType::DT_INT64_REF:
    case tensorflow::DataType::DT_BOOL_REF:
    case tensorflow::DataType::DT_QINT8_REF:
    case tensorflow::DataType::DT_QUINT8_REF:
    case tensorflow::DataType::DT_QINT32_REF:
    case tensorflow::DataType::DT_BFLOAT16_REF:
    case tensorflow::DataType::DT_QINT16_REF:
    case tensorflow::DataType::DT_QUINT16_REF:
    case tensorflow::DataType::DT_UINT16_REF:
    case tensorflow::DataType::DT_COMPLEX128_REF:
    case tensorflow::DataType::DT_HALF_REF:
    case tensorflow::DataType::DT_RESOURCE_REF:
    case tensorflow::DataType::DT_VARIANT_REF:
    case tensorflow::DataType::DT_UINT32_REF:
    case tensorflow::DataType::DT_UINT64_REF:
    case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
    case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: break;
    }
    return shape_type;
}

literal tf_parser::parse_tensor(const tensorflow::TensorProto& t) const
{
    std::vector<size_t> dims = parse_dims(t.tensor_shape());
    size_t shape_size = std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<size_t>());
    if(!t.tensor_content().empty()) // has raw data
    {
        const std::string& s = t.tensor_content();
        switch(t.dtype())
        {
        case tensorflow::DataType::DT_FLOAT: return literal{{shape::float_type, dims}, s.data()};
        case tensorflow::DataType::DT_BOOL:
        case tensorflow::DataType::DT_INT8: return literal{{shape::int8_type, dims}, s.data()};
        case tensorflow::DataType::DT_UINT16:
        case tensorflow::DataType::DT_INT16: return literal{{shape::int16_type, dims}, s.data()};
        case tensorflow::DataType::DT_INT32: return literal{{shape::int32_type, dims}, s.data()};
        case tensorflow::DataType::DT_INT64: return literal{{shape::int64_type, dims}, s.data()};
        case tensorflow::DataType::DT_HALF: return literal{{shape::half_type, dims}, s.data()};
        case tensorflow::DataType::DT_DOUBLE: return literal{{shape::double_type, dims}, s.data()};
        case tensorflow::DataType::DT_INVALID:
        case tensorflow::DataType::DT_UINT8:
        case tensorflow::DataType::DT_STRING:
        case tensorflow::DataType::DT_UINT32:
        case tensorflow::DataType::DT_UINT64:
        case tensorflow::DataType::DT_COMPLEX64:
        case tensorflow::DataType::DT_COMPLEX128:
        case tensorflow::DataType::DT_QINT8:
        case tensorflow::DataType::DT_QUINT8:
        case tensorflow::DataType::DT_QINT32:
        case tensorflow::DataType::DT_BFLOAT16:
        case tensorflow::DataType::DT_QINT16:
        case tensorflow::DataType::DT_QUINT16:
        case tensorflow::DataType::DT_RESOURCE:
        case tensorflow::DataType::DT_VARIANT:
        case tensorflow::DataType::DT_FLOAT_REF:
        case tensorflow::DataType::DT_DOUBLE_REF:
        case tensorflow::DataType::DT_INT32_REF:
        case tensorflow::DataType::DT_UINT8_REF:
        case tensorflow::DataType::DT_INT16_REF:
        case tensorflow::DataType::DT_INT8_REF:
        case tensorflow::DataType::DT_STRING_REF:
        case tensorflow::DataType::DT_COMPLEX64_REF:
        case tensorflow::DataType::DT_INT64_REF:
        case tensorflow::DataType::DT_BOOL_REF:
        case tensorflow::DataType::DT_QINT8_REF:
        case tensorflow::DataType::DT_QUINT8_REF:
        case tensorflow::DataType::DT_QINT32_REF:
        case tensorflow::DataType::DT_BFLOAT16_REF:
        case tensorflow::DataType::DT_QINT16_REF:
        case tensorflow::DataType::DT_QUINT16_REF:
        case tensorflow::DataType::DT_UINT16_REF:
        case tensorflow::DataType::DT_COMPLEX128_REF:
        case tensorflow::DataType::DT_HALF_REF:
        case tensorflow::DataType::DT_RESOURCE_REF:
        case tensorflow::DataType::DT_VARIANT_REF:
        case tensorflow::DataType::DT_UINT32_REF:
        case tensorflow::DataType::DT_UINT64_REF:
        case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
        case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_:
            throw std::runtime_error("");
        }
        MIGRAPHX_THROW("Invalid tensor type");
    }
    switch(t.dtype())
    {
    case tensorflow::DataType::DT_FLOAT:
        return create_literal(shape::float_type, dims, get_data_vals(t.float_val(), shape_size));
    case tensorflow::DataType::DT_INT8:
        return create_literal(shape::int8_type, dims, get_data_vals(t.int_val(), shape_size));
    case tensorflow::DataType::DT_UINT16:
        return create_literal(shape::uint16_type, dims, get_data_vals(t.int_val(), shape_size));
    case tensorflow::DataType::DT_INT16:
        return create_literal(shape::int16_type, dims, get_data_vals(t.int_val(), shape_size));
    case tensorflow::DataType::DT_INT32:
        return create_literal(shape::int32_type, dims, get_data_vals(t.int_val(), shape_size));
    case tensorflow::DataType::DT_INT64:
        return create_literal(shape::int64_type, dims, get_data_vals(t.int64_val(), shape_size));
    case tensorflow::DataType::DT_BOOL:
        return create_literal(shape::int32_type, dims, get_data_vals(t.bool_val(), shape_size));
    case tensorflow::DataType::DT_HALF:
    {
        std::vector<int> data_int32 = get_data_vals(t.half_val(), shape_size);
        std::vector<uint16_t> data_uint16(data_int32.begin(), data_int32.end());
        std::vector<half> data_half;
        std::transform(data_uint16.begin(),
                       data_uint16.end(),
                       std::back_inserter(data_half),
                       [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
        return create_literal(shape::half_type, dims, data_half);
    }
    case tensorflow::DataType::DT_DOUBLE:
        return literal{{shape::double_type, dims}, get_data_vals(t.double_val(), shape_size)};
    case tensorflow::DataType::DT_INVALID:
    case tensorflow::DataType::DT_UINT8:
    case tensorflow::DataType::DT_STRING:
    case tensorflow::DataType::DT_UINT32:
    case tensorflow::DataType::DT_UINT64:
    case tensorflow::DataType::DT_COMPLEX64:
    case tensorflow::DataType::DT_COMPLEX128:
    case tensorflow::DataType::DT_QINT8:
    case tensorflow::DataType::DT_QUINT8:
    case tensorflow::DataType::DT_QINT32:
    case tensorflow::DataType::DT_BFLOAT16:
    case tensorflow::DataType::DT_QINT16:
    case tensorflow::DataType::DT_QUINT16:
    case tensorflow::DataType::DT_RESOURCE:
    case tensorflow::DataType::DT_VARIANT:
    case tensorflow::DataType::DT_FLOAT_REF:
    case tensorflow::DataType::DT_DOUBLE_REF:
    case tensorflow::DataType::DT_INT32_REF:
    case tensorflow::DataType::DT_UINT8_REF:
    case tensorflow::DataType::DT_INT16_REF:
    case tensorflow::DataType::DT_INT8_REF:
    case tensorflow::DataType::DT_STRING_REF:
    case tensorflow::DataType::DT_COMPLEX64_REF:
    case tensorflow::DataType::DT_INT64_REF:
    case tensorflow::DataType::DT_BOOL_REF:
    case tensorflow::DataType::DT_QINT8_REF:
    case tensorflow::DataType::DT_QUINT8_REF:
    case tensorflow::DataType::DT_QINT32_REF:
    case tensorflow::DataType::DT_BFLOAT16_REF:
    case tensorflow::DataType::DT_QINT16_REF:
    case tensorflow::DataType::DT_QUINT16_REF:
    case tensorflow::DataType::DT_UINT16_REF:
    case tensorflow::DataType::DT_COMPLEX128_REF:
    case tensorflow::DataType::DT_HALF_REF:
    case tensorflow::DataType::DT_RESOURCE_REF:
    case tensorflow::DataType::DT_VARIANT_REF:
    case tensorflow::DataType::DT_UINT32_REF:
    case tensorflow::DataType::DT_UINT64_REF:
    case tensorflow::DataType::DataType_INT_MAX_SENTINEL_DO_NOT_USE_:
    case tensorflow::DataType::DataType_INT_MIN_SENTINEL_DO_NOT_USE_: throw std::runtime_error("");
    }
    MIGRAPHX_THROW("Invalid tensor type");
}

} // namespace tf
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx