parse_onehot.cpp 2.76 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

struct parse_onehot : op_parser<parse_onehot>
{
    std::vector<op_desc> operators() const { return {{"OneHot"}}; }

    instruction_ref parse(const op_desc& /*opd*/,
                          const onnx_parser& /*parser*/,
                          onnx_parser::node_info info,
                          std::vector<instruction_ref> args) const
    {
        migraphx::argument depth_arg = args[1]->eval();
        check_arg_empty(depth_arg, "PARSE_ONEHOT: depth - dynamic shape not supported");
        size_t depth = depth_arg.at<size_t>();

        int64_t axis = -1;
        if(contains(info.attributes, "axis"))
        {
            axis = info.attributes.at("axis").i();
        }

        std::vector<float> depth_input(depth * depth, 0.0f);
        for(int i = 0; i < depth; i++)
        {
            depth_input[depth * i + i] = 1.0f;
        }

        auto type = args[2]->get_shape().type();
        shape s{type, {depth, depth}};
Shucai Xiao's avatar
Shucai Xiao committed
38
        auto l_val      = info.add_literal({s, depth_input});
Paul Fultz II's avatar
Paul Fultz II committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        auto gather_out = info.add_instruction(make_op("gather", {{"axis", 0}}), {l_val, args[0]});

        // Finally, we need a transpose to move the inner most dim to the axis dim
        int n_rank = gather_out->get_shape().lens().size();
        if(axis < -n_rank or axis >= n_rank)
        {
            MIGRAPHX_THROW("PARSE_ONEHOT: axis out of range");
        }
        int64_t tuned_axis = (axis < 0) ? axis + n_rank : axis;
        std::vector<int64_t> perm(n_rank - 1);
        std::iota(perm.begin(), perm.end(), 0);
        perm.insert(perm.begin() + tuned_axis, n_rank - 1);
        auto tr_out = info.add_instruction(make_op("transpose", {{"dims", perm}}), gather_out);
        auto lens   = tr_out->get_shape().lens();

        auto off_val = info.add_instruction(
            make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[2]);
        auto on_val = info.add_instruction(
            make_op("slice", {{"axes", {0}}, {"starts", {1}}, {"ends", {2}}}), args[2]);
        auto diff = info.add_instruction(make_op("sub"), on_val, off_val);
        auto unsq_off_val =
            info.add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), off_val);
        auto unsq_diff_val =
            info.add_instruction(make_op("multibroadcast", {{"output_lens", lens}}), diff);
        auto l_mul = info.add_instruction(make_op("mul"), tr_out, unsq_diff_val);
        return info.add_instruction(make_op("add"), l_mul, unsq_off_val);
    }
};

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx