simplify_reshapes.cpp 28.7 KB
Newer Older
1
2
3
/*
 * The MIT License (MIT)
 *
4
 * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
24
#include <iterator>
Paul's avatar
Paul committed
25
26
27
#include <migraphx/simplify_reshapes.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
28
#include <migraphx/op/as_shape.hpp>
29
#include <migraphx/op/transpose.hpp>
Paul's avatar
Paul committed
30
#include <migraphx/op/concat.hpp>
31
#include <migraphx/op/slice.hpp>
Paul's avatar
Paul committed
32
33
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>
Paul's avatar
Paul committed
34
#include <migraphx/matcher.hpp>
35
#include <migraphx/permutation.hpp>
36
#include <migraphx/dead_code_elimination.hpp>
Paul's avatar
Paul committed
37
#include <unordered_set>
38
#include <migraphx/make_op.hpp>
39
#include <migraphx/tune_axis.hpp>
40

41
#include <map>
Paul's avatar
Paul committed
42

Paul's avatar
Paul committed
43
namespace migraphx {
Paul's avatar
Paul committed
44
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
45

Paul's avatar
Paul committed
46
const auto& reshaper_names()
Paul's avatar
Paul committed
47
{
48
49
    // clang-format off
    static const std::unordered_set<std::string> names = {
50
        "flatten",
51
        "reshape",
52
53
54
        "contiguous",
        "squeeze",
        "unsqueeze"
55
56
    };
    // clang-format on
Paul's avatar
Paul committed
57
    return names;
Paul's avatar
Paul committed
58
59
}

Paul's avatar
Paul committed
60
bool is_reshaper(instruction_ref ins) { return contains(reshaper_names(), ins->name()); }
Paul's avatar
Paul committed
61
62
63

instruction_ref find_transpose_input(instruction_ref ins)
{
Paul's avatar
Paul committed
64
    if(ins->inputs().size() != 1)
Paul's avatar
Paul committed
65
        return ins;
Paul's avatar
Paul committed
66
    if(ins->inputs().front()->name() == "contiguous")
Paul's avatar
Paul committed
67
68
69
70
        return find_transpose_input(ins->inputs().front());
    if(ins->inputs().front()->name() == "transpose")
        return ins->inputs().front();
    return ins;
Paul's avatar
Paul committed
71
72
}

73
74
75
76
77
78
79
auto get_transpose_dims(instruction_ref ins)
{
    return any_cast<const op::transpose&>(ins->get_operator()).dims;
}

bool is_no_transpose(const std::vector<int64_t>& dims)
{
Paul's avatar
Paul committed
80
    if(dims.empty())
81
        return true;
Paul's avatar
Paul committed
82
    if(dims.front() != 0)
83
        return false;
Paul's avatar
Paul committed
84
85
    return std::adjacent_find(
               dims.begin(), dims.end(), [](auto x, auto y) { return (y - x) != 1; }) == dims.end();
86
87
}

Paul's avatar
Paul committed
88
struct find_reshaper
Paul's avatar
Paul committed
89
{
Paul's avatar
Paul committed
90
    auto matcher() const
Paul's avatar
Paul committed
91
    {
92
93
94
95
96
97
        auto reshaper          = match::name(reshaper_names());
        auto contiguous        = match::name("contiguous");
        auto no_output_reshape = match::none_of[match::outputs()](reshaper);
        auto input_reshape     = match::arg(0)(match::skip(contiguous)(reshaper));
        auto input             = match::skip(reshaper, contiguous)(match::any().bind("x"));
        return reshaper(no_output_reshape, input_reshape, input);
Paul's avatar
Paul committed
98
99
    }

100
    void apply(module& m, const match::matcher_result& mr) const
Paul's avatar
Paul committed
101
    {
102
103
104
        auto ins   = mr.result;
        auto input = mr.instructions["x"];
        auto dims  = ins->get_shape().lens();
Paul's avatar
Paul committed
105

106
107
108
        if(not input->get_shape().standard())
            input = m.insert_instruction(ins, make_op("contiguous"), input);
        m.replace_instruction(ins, make_op("reshape", {{"dims", dims}}), input);
Paul's avatar
Paul committed
109
110
111
    }
};

Paul's avatar
Paul committed
112
113
114
115
116
struct find_nop_reshapes
{
    auto matcher() const
    {
        auto reshapes = reshaper_names();
117
118
119
        reshapes.insert("as_shape");
        reshapes.insert("broadcast");
        reshapes.insert("concat");
Paul Fultz II's avatar
Paul Fultz II committed
120
        reshapes.insert("convert");
121
122
        reshapes.insert("multibroadcast");
        reshapes.insert("pad");
Paul's avatar
Paul committed
123
        reshapes.insert("slice");
124
        reshapes.insert("transpose");
125
126
127
128
129
        reshapes.insert("reduce_mean");
        reshapes.insert("reduce_max");
        reshapes.insert("reduce_min");
        reshapes.insert("reduce_sum");
        reshapes.insert("reduce_prod");
Paul's avatar
Paul committed
130
        return match::name(reshapes)(match::same_shape(match::arg(0)));
Paul's avatar
Paul committed
131
132
    }

133
    void apply(module& m, const match::matcher_result& mr) const
Paul's avatar
Paul committed
134
135
    {
        auto ins = mr.result;
136
        m.replace_instruction(ins, ins->inputs().front());
Paul's avatar
Paul committed
137
138
139
    }
};

Paul's avatar
Paul committed
140
141
142
143
struct find_transpose
{
    auto matcher() const
    {
144
145
146
147
148
        auto output_not_transpose =
            match::none_of(match::skip_output(match::name("contiguous"))(match::name("transpose")));
        auto input_has_transpose =
            match::args(match::skip(match::name("contiguous"))(match::name("transpose")));
        return match::name("transpose")(output_not_transpose, input_has_transpose);
Paul's avatar
Paul committed
149
150
    }

151
    void apply(module& m, const match::matcher_result& mr) const
Paul's avatar
Paul committed
152
153
    {
        auto ins = mr.result;
Paul's avatar
Paul committed
154
155
        auto x   = ins;
        auto t   = ins;
Paul's avatar
Paul committed
156
157
158
159
160
161
162
163
164
165
166
167
        std::vector<std::int64_t> dims(ins->get_shape().lens().size());
        std::iota(dims.begin(), dims.end(), 0);
        do
        {
            dims = reorder_dims(get_transpose_dims(t), dims);
            x    = t;
            t    = find_transpose_input(x);
        } while(x != t and t->name() == "transpose");
        if(t == ins or t->name() != "transpose")
            return;
        if(is_no_transpose(dims))
        {
168
            m.replace_instruction(ins, t->inputs().front());
Paul's avatar
Paul committed
169
170
        }
        else
Paul's avatar
Paul committed
171
        {
172
            m.replace_instruction(
173
                ins, make_op("transpose", {{"permutation", dims}}), t->inputs().front());
Paul's avatar
Paul committed
174
        }
Paul's avatar
Paul committed
175
    }
Paul's avatar
Paul committed
176
177
};

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
struct find_nested_convert
{
    auto matcher() const { return match::name("convert")(match::arg(0)(match::name("convert"))); }

    void apply(module& m, const match::matcher_result& mr) const
    {
        auto ins   = mr.result;
        auto x     = ins->inputs().front();
        auto input = x->inputs().front();

        if(ins->get_shape() != input->get_shape())
            return;

        m.replace_instruction(ins, input);
    }
};

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
struct find_nested_slice
{
    auto matcher() const { return match::name("slice")(match::arg(0)(match::name("slice"))); }

    using axes_map = std::map<std::size_t, std::pair<std::size_t, std::size_t>>;

    static axes_map get_axes(instruction_ref ins)
    {
        axes_map result;
        auto op = any_cast<op::slice>(ins->get_operator());
        for(std::size_t i = 0; i < op.axes.size(); i++)
        {
            result[op.axes[i]] = std::make_pair(op.starts[i], op.ends[i]);
        }
        return result;
    }

    static axes_map merge(const axes_map& m1, const axes_map& m2)
    {
        axes_map result;
        // Non overlapping
        for(auto&& p : m1)
        {
            if(contains(m2, p.first))
                continue;
            result[p.first] = p.second;
        }
        for(auto&& p : m2)
        {
            if(contains(m1, p.first))
                continue;
            result[p.first] = p.second;
        }
        // Overlapping
        for(auto&& p1 : m1)
        {
            if(not contains(m2, p1.first))
                continue;
            auto&& v1        = p1.second;
            auto&& v2        = m2.at(p1.first);
            auto start       = v1.first + v2.first;
            auto end         = start + (v2.second - v2.first);
            result[p1.first] = std::make_pair(start, end);
        }
        return result;
    }

242
    void apply(module& m, const match::matcher_result& mr) const
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    {
        auto ins   = mr.result;
        auto slice = ins->inputs().front();
        auto input = slice->inputs().front();

        auto a1 = get_axes(ins);
        auto a2 = get_axes(slice);

        auto axes = merge(a2, a1);

        auto op = op::slice{};
        for(auto&& pp : axes)
        {
            op.axes.push_back(pp.first);
            op.starts.push_back(pp.second.first);
            op.ends.push_back(pp.second.second);
        }
260
        m.replace_instruction(ins, op, input);
261
262
263
    }
};

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
struct find_concat_multibroadcasts
{
    auto matcher() const
    {
        return match::name("concat")(match::all_of[match::inputs()](match::name("multibroadcast")));
    }

    void apply(module& m, const match::matcher_result& mr) const
    {
        auto ins        = mr.result;
        auto op         = any_cast<op::concat>(ins->get_operator());
        auto out_lens   = ins->get_shape().lens();
        auto inputs     = ins->inputs();
        auto in_strides = inputs.front()->get_shape().strides();

        // Only apply when concat axis is not a broadcasted dimension
        if(std::any_of(inputs.begin(), inputs.end(), [&](auto i) {
               return i->get_shape().strides()[op.axis] == 0;
           }))
        {
            return;
        }

        // Use inputs of multibroadcast ops as inputs to new concat op
        std::transform(inputs.begin(), inputs.end(), inputs.begin(), [](auto i) {
            return i->inputs().front();
        });

        // Reduce axis by number of leading broadcasted dimensions
        if(inputs.front()->get_shape().lens().size() < out_lens.size())
            op.axis -= std::count(in_strides.begin(), in_strides.begin() + op.axis, 0);

        auto concat = m.insert_instruction(ins, op, inputs);
        m.replace_instruction(
            ins, migraphx::make_op("multibroadcast", {{"out_lens", out_lens}}), concat);
    }
};

Paul's avatar
Paul committed
302
303
304
305
struct find_concat_transpose
{
    auto matcher() const
    {
306
        return match::name("concat")(match::all_of[match::inputs()](match::name("transpose")));
Paul's avatar
Paul committed
307
308
    }

309
    void apply(module& m, const match::matcher_result& mr) const
Paul's avatar
Paul committed
310
    {
Shucai Xiao's avatar
Shucai Xiao committed
311
312
313
        auto ins          = mr.result;
        auto trans_inputs = ins->inputs();
        auto s            = trans_inputs.front()->get_shape();
Paul's avatar
Paul committed
314
        assert(s.transposed());
Shucai Xiao's avatar
Shucai Xiao committed
315
316
317
318
        auto op          = any_cast<op::concat>(ins->get_operator());
        auto permutation = find_permutation(s);

        // permutation should be the same for all inputs
319
        if(not std::all_of(trans_inputs.begin(), trans_inputs.end(), [&](auto in) {
Shucai Xiao's avatar
Shucai Xiao committed
320
321
322
323
324
325
326
327
               return (find_permutation(in->get_shape()) == permutation);
           }))
        {
            return;
        }

        // axis could be a negative value
        int64_t n_dim = static_cast<int64_t>(s.lens().size());
328
        op.axis       = tune_axis(n_dim, op.axis, op.name());
Shucai Xiao's avatar
Shucai Xiao committed
329

Paul's avatar
Paul committed
330
        auto ipermutation = invert_permutation(permutation);
Paul's avatar
Paul committed
331
        op.axis           = ipermutation[op.axis];
Paul's avatar
Paul committed
332
333
334

        std::vector<instruction_ref> inputs;
        std::transform(
Paul's avatar
Paul committed
335
            ins->inputs().begin(), ins->inputs().end(), std::back_inserter(inputs), [&](auto i) {
336
                return m.insert_instruction(
337
                    ins, make_op("transpose", {{"permutation", permutation}}), i);
Paul's avatar
Paul committed
338
            });
339
340
        auto concat = m.insert_instruction(ins, op, inputs);
        auto t      = m.insert_instruction(
341
            ins, make_op("transpose", {{"permutation", ipermutation}}), concat);
Paul's avatar
Paul committed
342
        assert(ins->get_shape().lens() == t->get_shape().lens());
343
        m.replace_instruction(ins, t);
Paul's avatar
Paul committed
344
345
346
    }
};

Paul Fultz II's avatar
Paul Fultz II committed
347
348
349
350
351
352
353
354
355
356
357
358
359
struct find_nested_concat
{
    auto matcher() const
    {
        return match::name("concat")(match::any_of[match::inputs()](match::name("concat")));
    }

    static std::size_t get_axis(instruction_ref ins)
    {
        auto op = any_cast<op::concat>(ins->get_operator());
        return op.axis;
    }

360
    void apply(module& m, const match::matcher_result& mr) const
Paul Fultz II's avatar
Paul Fultz II committed
361
362
363
364
365
366
367
368
369
370
371
372
373
    {
        auto ins  = mr.result;
        auto axis = get_axis(ins);
        std::vector<instruction_ref> args;
        fix([&](auto self, auto&& inputs) {
            for(auto&& i : inputs)
            {
                if(i->name() == "concat" and get_axis(i) == axis and i->outputs().size() == 1)
                    self(i->inputs());
                else
                    args.push_back(i);
            }
        })(ins->inputs());
374
        m.replace_instruction(ins, ins->get_operator(), args);
Paul Fultz II's avatar
Paul Fultz II committed
375
376
377
    }
};

378
379
380
381
382
383
384
385
struct find_resize
{
    auto matcher() const
    {
        return match::name("gather")(
            match::args(match::name("reshape").bind("data"), match::is_constant().bind("ind")));
    }

386
    void apply(module& m, const match::matcher_result& r) const
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    {
        auto ins     = r.result;
        auto ins_rsp = r.instructions["data"];
        auto ins_ind = r.instructions["ind"];

        // resize input shape
        if(ins_rsp->get_shape().lens().size() != 1)
        {
            return;
        }

        // resize output shape
        const auto& in_shape  = ins_rsp->inputs().front()->get_shape();
        const auto& out_shape = ins->get_shape();
        // check if output shape is multiple of input shape
        const auto& in_lens  = in_shape.lens();
        const auto& out_lens = out_shape.lens();
        if(in_lens.size() != out_lens.size())
        {
            return;
        }

        // output shape must be multiple of input shape
        std::vector<bool> is_multi(in_lens.size());
        std::transform(
            in_lens.begin(), in_lens.end(), out_lens.begin(), is_multi.begin(), [](auto x, auto y) {
                return (y % x == 0);
            });
        if(not std::all_of(is_multi.begin(), is_multi.end(), [](auto b) { return b; }))
        {
            return;
        }

        // output must be multiple of inputs
        std::vector<std::size_t> scales(in_lens.size());
        std::transform(
            in_lens.begin(), in_lens.end(), out_lens.begin(), scales.begin(), [](auto x, auto y) {
                return y / x;
            });

        // if ind is not constant, cannot optimize
        std::vector<int> vec_ind;
        auto arg_ind = ins_ind->eval();
        if(arg_ind.empty())
        {
            return;
        }
        arg_ind.visit([&](auto v) { vec_ind.assign(v.begin(), v.end()); });
435
        if(not all_of(range(out_shape.elements()), [&](auto i) {
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
               auto out_idx = out_shape.multi(i);
               auto in_idx  = out_idx;
               std::transform(out_idx.begin(),
                              out_idx.end(),
                              scales.begin(),
                              in_idx.begin(),
                              [&](auto io, auto scale) { return io - (io % scale); });
               return vec_ind[i] == vec_ind[out_shape.index(in_idx)];
           }))
        {
            return;
        }

        // wrap up shapes for multibroadcast
        std::vector<std::pair<std::size_t, std::size_t>> dim_scales;
        std::transform(in_lens.begin(),
                       in_lens.end(),
                       out_lens.begin(),
                       std::back_inserter(dim_scales),
                       [](auto x, auto y) { return std::make_pair(x, y / x); });

        std::vector<int64_t> in_dims;
        std::vector<int64_t> out_dims;
        for(auto& isp : dim_scales)
        {
            in_dims.push_back(isp.first);
            out_dims.push_back(isp.first * isp.second);
            if(isp.first == 1 or isp.second == 1)
            {
                continue;
            }

            out_dims.back() = isp.first;
            in_dims.push_back(1);
            out_dims.push_back(isp.second);
        }

        auto in_rsp   = ins_rsp->inputs().front();
474
        auto rsp_data = m.insert_instruction(
475
            ins_rsp, migraphx::make_op("reshape", {{"dims", in_dims}}), in_rsp);
476
        auto mb_rsp = m.insert_instruction(
477
            ins_rsp, migraphx::make_op("multibroadcast", {{"out_lens", out_dims}}), rsp_data);
478
        auto std_mb = m.insert_instruction(ins, migraphx::make_op("contiguous"), mb_rsp);
479
        std::vector<int64_t> rsp_dims(out_lens.begin(), out_lens.end());
480
        m.replace_instruction(ins, migraphx::make_op("reshape", {{"dims", rsp_dims}}), std_mb);
481
482
483
484
485
486
487
488
489
490
491
492
    }
};

struct find_where_op
{
    auto matcher() const
    {
        return match::name("gather")(
            match::args(match::name("reshape")(match::arg(0)(match::name("concat").bind("data"))),
                        match::is_constant().bind("ind")));
    }

493
    void apply(module& m, const match::matcher_result& r) const
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    {
        auto ins     = r.result;
        auto concat  = r.instructions["data"];
        auto ins_ind = r.instructions["ind"];
        std::vector<bool> vec_ind;
        auto arg_ind = ins_ind->eval();
        arg_ind.visit([&](auto v) { vec_ind.assign(v.begin(), v.end()); });
        // ind has to be the same value
        auto val = vec_ind.front();
        if(not std::all_of(vec_ind.begin(), vec_ind.end(), [&](auto v) { return (v == val); }))
        {
            return;
        }

        // concat axis must be 0
        auto op = any_cast<op::concat>(concat->get_operator());
        if(op.axis != 0)
        {
            return;
        }

        // check concat inputs, it has to be 2 and have the same shape
        const auto& inputs = concat->inputs();
        if(inputs.size() != 2)
        {
            return;
        }
        if(inputs.at(0)->get_shape() != inputs.at(1)->get_shape())
        {
            return;
        }
        if(inputs.at(0)->get_shape().lens() != ins_ind->get_shape().lens())
        {
            return;
        }

        if(val)
        {
532
            m.replace_instruction(ins, inputs.at(0));
533
534
535
        }
        else
        {
536
            m.replace_instruction(ins, inputs.at(1));
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
        }
    }
};

struct find_reshape_cont
{
    auto matcher() const
    {
        return match::pointwise(
            match::nargs(2),
            match::either_arg(0, 1)(
                match::name("reshape")(match::args(match::name("contiguous").bind("cont")))
                    .bind("rsp"),
                match::any()));
    }

553
    void apply(module& m, const match::matcher_result& r) const
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    {
        auto ins      = r.result;
        auto ins_cont = r.instructions["cont"];
        auto in_ins   = r.instructions["rsp"];

        auto cont_input = ins_cont->inputs().front();
        auto lens       = cont_input->get_shape().lens();
        std::vector<int64_t> dims(lens.begin(), lens.end());

        if(in_ins->get_shape() != ins->get_shape())
        {
            return;
        }

        if(not std::all_of(ins->inputs().begin(), ins->inputs().end(), [](auto i) {
               return i->get_shape().standard();
           }))
        {
            return;
        }

        auto out_lens = ins->get_shape().lens();
        std::vector<int64_t> out_dims(out_lens.begin(), out_lens.end());
        std::vector<instruction_ref> inputs;
        for(const auto& in : ins->inputs())
        {
            if(in == in_ins)
            {
                inputs.push_back(cont_input);
            }
            else
            {
                inputs.push_back(
587
                    m.insert_instruction(ins, make_op("reshape", {{"dims", dims}}), in));
588
589
            }
        }
590
591
        auto out = m.insert_instruction(ins, ins->get_operator(), inputs);
        m.replace_instruction(ins, make_op("reshape", {{"dims", out_dims}}), out);
592
593
594
    }
};

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
// match sequence of transpose --> contiguous --> reshaper_op
auto match_transpose_contiguous_reshaper()
{
    return match::name({"reshape", "squeeze", "unsqueeze"})(
               match::used_once(),
               match::args(
                   match::name("contiguous")(
                       match::used_once(), match::args(match::transpose_shape().bind("trans_ins")))
                       .bind("cont_ins")))
        .bind("reshaper_ins");
};

// finds the pattern of transpose --> contiguous --> reshaper_op --> unary
// application of this matcher moves the unary operation before the contiguous so it becomes
// transpose --> unary --> contiguous --> reshaper_op. later pointwise sub-module can be created out
// of unary --> contiguous --> reshaper_op. Such pattern appears in depthToSpace or spaceToDepth
// operator.
struct find_transpose_contiguous_reshaper_unary
{
    auto matcher() const
    {
616
617
618
        return pointwise(match::used_once(),
                         match::nargs(1),
                         match::args(match_transpose_contiguous_reshaper()));
619
620
    }

621
    void apply(module& m, const match::matcher_result& r) const
622
623
624
625
626
627
    {
        auto ins           = r.result;
        auto reshaper_ins  = r.instructions["reshaper_ins"];
        auto trans_ins     = r.instructions["trans_ins"];
        auto cont_ins      = r.instructions["cont_ins"];
        auto unary_op_name = ins->get_operator().name();
628
629
        auto unary_ins     = m.insert_instruction(cont_ins, make_op(unary_op_name), trans_ins);
        auto new_cont_ins  = m.insert_instruction(cont_ins, make_op("contiguous"), unary_ins);
630
        // older cont and reshape are removed by deadcode elimination
631
        m.replace_instruction(ins, reshaper_ins->get_operator(), new_cont_ins);
632
633
634
    }
};

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
struct find_broadcast_transpose
{
    auto matcher() const
    {
        return match::name("transpose")(
            match::arg(0)(match::name("multibroadcast").bind("bcast_ins")));
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins       = r.result;
        auto ins_lens  = ins->get_shape().lens();
        auto bcast_ins = r.instructions["bcast_ins"];
        auto input     = bcast_ins->inputs().front();
        // for now, focusing on scalar transformation
        if(not input->get_shape().scalar())
            return;

        auto new_mbcast = m.insert_instruction(
            bcast_ins, make_op("multibroadcast", {{"out_lens", ins_lens}}), input);
        m.replace_instruction(ins, new_mbcast);
    }
};

659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
struct find_slice_transpose
{
    auto matcher() const
    {
        return match::any(match::any_of[match::outputs()](
            match::name("slice")(match::output(match::name("transpose")))));
    }

    static std::vector<int64_t> find_common_perm(const std::vector<instruction_ref>& transposes)
    {
        std::map<std::vector<int64_t>, int64_t> count;
        for(auto t : transposes)
        {
            auto perm = t->get_operator().to_value()["permutation"].to_vector<int64_t>();
            count[perm]++;
        }
        return std::max_element(
                   count.begin(), count.end(), by(std::less<>{}, [](auto&& p) { return p.second; }))
            ->first;
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins = r.result;
        std::vector<instruction_ref> splits;
        std::copy_if(ins->outputs().begin(),
                     ins->outputs().end(),
                     std::back_inserter(splits),
                     [&](instruction_ref out) {
                         return out->name() == "slice" and out->outputs().size() == 1 and
                                out->outputs().front()->name() == "transpose";
                     });
        if(splits.size() < 2)
            return;
        std::vector<instruction_ref> transposes;
        std::transform(splits.begin(),
                       splits.end(),
                       std::back_inserter(transposes),
                       [](auto split) { return split->outputs().front(); });
        auto perm  = find_common_perm(transposes);
        auto iperm = invert_permutation(perm);
        auto pre   = m.insert_instruction(
            std::next(ins), make_op("transpose", {{"permutation", perm}}), ins);
        for(auto i : range(transposes.size()))
        {
            auto split = splits[i];
            auto t     = transposes[i];
            auto op    = any_cast<op::slice>(split->get_operator());
            std::transform(op.axes.begin(), op.axes.end(), op.axes.begin(), [&](auto axis) {
                return iperm[axis];
            });
            auto new_ins = m.insert_instruction(t, op, pre);
            if(t->get_operator() != pre->get_operator())
            {
                auto curr = t->get_operator().to_value()["permutation"].to_vector<int64_t>();
                new_ins   = m.insert_instruction(
                    t, make_op("transpose", {{"permutation", reorder_dims(iperm, curr)}}), new_ins);
            }
            m.replace_instruction(t, new_ins);
        }
    }
};

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
struct find_transpose_slice
{
    auto matcher() const
    {
        return match::name("transpose")(match::all_of[match::outputs()](match::name("slice")));
    }

    static std::vector<int64_t> slice_distance(const op::slice& op)
    {
        assert(op.starts.size() == op.ends.size());
        std::vector<int64_t> result(op.starts.size());
        std::transform(
            op.ends.begin(), op.ends.end(), op.starts.begin(), result.begin(), std::minus<>{});
        return result;
    }

    void apply(module& m, const match::matcher_result& r) const
    {
        auto ins    = r.result;
        auto slices = ins->outputs();
        if(slices.empty())
            return;
        auto slice     = any_cast<op::slice>(slices.front()->get_operator());
        auto sdistance = slice_distance(slice);
        // Check all distances and axes are the same
        if(std::any_of(slices.begin(), slices.end(), [&](auto sins) {
               auto s = any_cast<op::slice>(sins->get_operator());
               return s.axes != slice.axes or slice_distance(s) != sdistance;
           }))
            return;
        // Check distances are divisible by lens of corresponding axes
        auto mod_by_distance = [&](const auto& v, auto f) {
            return std::inner_product(v.begin(),
                                      v.end(),
                                      sdistance.begin(),
                                      0,
                                      std::plus<>{},
                                      [&](auto x, auto d) -> uint64_t {
                                          if(d == 0)
                                              return 1;
                                          return f(x) % d;
                                      });
        };
        if(mod_by_distance(slice.axes, [&](auto x) { return ins->get_shape().lens()[x]; }) != 0 or
           mod_by_distance(slice.starts, id{}) != 0 or mod_by_distance(slice.ends, id{}) != 0)
            return;
        // TODO: Handle multiple axes
        if(sdistance.size() != 1)
            return;
        auto axis = slice.axes.front();
        // Skip if axis would be packed
        if(std::all_of(ins->get_shape().lens().begin(),
                       ins->get_shape().lens().begin() + axis,
                       [](auto x) { return x == 1; }))
            return;
        // Compute axis before transpose to use for unsqueeze
        auto perm    = ins->get_operator().to_value()["permutation"].to_vector<int64_t>();
779
        auto preaxis = perm[axis];
shivadbhavsar's avatar
shivadbhavsar committed
780
781
782
783
784
785
786
787
        // Make unsqueeze
        std::vector<int64_t> steps(sdistance.size());
        std::transform(
            slice.axes.begin(),
            slice.axes.end(),
            sdistance.begin(),
            steps.begin(),
            [&](const auto ax, const auto sdis) { return ins->get_shape().lens().at(ax) / sdis; });
788
        auto unsqueeze = m.insert_instruction(
shivadbhavsar's avatar
shivadbhavsar committed
789
            ins, make_op("unsqueeze", {{"axes", {preaxis}}, {"steps", steps}}), ins->inputs());
790
791
        // Make transpose
        std::transform(perm.begin(), perm.end(), perm.begin(), [&](auto i) {
shivadbhavsar's avatar
shivadbhavsar committed
792
            if(i >= preaxis)
793
794
795
                return i + 1;
            return i;
        });
shivadbhavsar's avatar
shivadbhavsar committed
796
        perm.insert(perm.begin(), preaxis);
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
        auto transpose =
            m.insert_instruction(ins, make_op("transpose", {{"permutation", perm}}), unsqueeze);
        // Slice and squeeze
        for(auto s : slices)
        {
            auto op        = any_cast<op::slice>(s->get_operator());
            op.axes        = {0};
            op.starts      = {op.starts.front() / sdistance.front()};
            op.ends        = {op.ends.front() / sdistance.front()};
            auto slice_ins = m.insert_instruction(ins, op, transpose);
            auto squeeze =
                m.insert_instruction(ins, make_op("squeeze", {{"axes", {0}}}), slice_ins);
            m.replace_instruction(s, squeeze);
        }
    }
};

814
void simplify_reshapes::apply(module& m) const
Paul's avatar
Paul committed
815
{
816
    for(int i = 0; i < depth; i++)
Paul's avatar
Paul committed
817
    {
818
        match::find_matches(m,
819
820
                            find_where_op{},
                            find_resize{},
821
822
                            find_nop_reshapes{},
                            find_reshaper{},
823
                            find_reshape_cont{},
824
825
                            find_transpose{},
                            find_concat_transpose{},
826
                            find_concat_multibroadcasts{},
827
                            find_nested_convert{},
828
                            find_nested_slice{},
829
                            find_nested_concat{},
830
                            find_transpose_slice{},
831
                            find_broadcast_transpose{},
832
                            find_slice_transpose{},
833
                            find_transpose_contiguous_reshaper_unary{});
834
        dead_code_elimination{}.apply(m);
Paul's avatar
Paul committed
835
    }
Paul's avatar
Paul committed
836
837
}

Paul's avatar
Paul committed
838
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
839
} // namespace migraphx