parse_deconvolution.cpp 6.13 KB
Newer Older
Paul Fultz II's avatar
Paul Fultz II committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/conv.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

template <class T>
std::vector<int64_t> to_int64_vector(const std::vector<T>& input_vector)
{
    std::vector<int64_t> output_vector(input_vector.begin(), input_vector.end());
    return output_vector;
}

struct parse_deconvolution : op_parser<parse_deconvolution>
{
    std::vector<op_desc> operators() const { return {{"ConvTranspose"}}; }

    instruction_ref parse(const op_desc& /*opd*/,
                          const onnx_parser& parser,
                          onnx_parser::node_info info,
                          std::vector<instruction_ref> args) const
    {
        operation op = make_op("deconvolution");
        value values = op.to_value();
        // op::deconvolution op;
        auto l0 = args[0];
        std::vector<std::int64_t> padding;
        bool asym_padding = false;
        auto in_lens      = l0->get_shape().lens();
        assert(in_lens.size() > 2);
        auto kdims = in_lens.size() - 2;

        // ensure pads availabe only when auto_pad is "NOT_SET"
        check_padding_mode(info, "CONV_TRANSPOSE");

        if(contains(info.attributes, "pads"))
        {
            copy(info.attributes["pads"].ints(), std::back_inserter(padding));

            asym_padding = is_asym_padding(padding);

            if(not asym_padding)
            {
                size_t pad_ndims = padding.size() / 2;
                check_attr_sizes(kdims, pad_ndims, "PARSE_CONV_TRANSPOSE: inconsistent paddings");
                values["padding"].clear();
                std::transform(padding.begin(),
                               padding.begin() + pad_ndims,
                               std::back_inserter(values["padding"]),
                               [](auto pad_val) { return pad_val; });
            }
        }
        if(contains(info.attributes, "strides"))
        {
            values["stride"].clear();
            copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
            check_attr_sizes(
                kdims, values["stride"].size(), "PARSE_CONV_TRANSPOSE: inconsistent strides");
        }
        if(contains(info.attributes, "dilations"))
        {
            values["dilation"].clear();
            copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"]));
            check_attr_sizes(
                kdims, values["dilation"].size(), "PARSE_CONV_TRANSPOSE: inconsistent dilations");
        }
        if(contains(info.attributes, "auto_pad"))
        {
            auto s = info.attributes["auto_pad"].s();
            if(contains(info.attributes, "pads") and to_upper(s) != "NOTSET")
            {
                MIGRAPHX_THROW("PARSE_CONV_TRANSPOSE: auto_pad and padding cannot be specified "
                               "simultaneously");
            }

            if(s.find("SAME") != std::string::npos)
            {
                values["padding_mode"] = to_value(op::padding_mode_t::same);
            }
        }

        if(contains(info.attributes, "group"))
        {
            values["group"] = parser.parse_value(info.attributes.at("group")).at<int>();
        }

        recalc_conv_attributes(values, kdims);

        op.from_value(values);
        auto l1                   = info.add_instruction(op, l0, args[1]);
        std::vector<int64_t> dims = to_int64_vector(l1->get_shape().lens());
        std::vector<int64_t> curr_shape(dims.begin() + 2, dims.end());
        if(asym_padding)
        {
            std::vector<int64_t> axes(kdims);
            std::iota(axes.begin(), axes.end(), 2); // ignore first 2 dims

            auto pad_kdim_start = padding.begin() + kdims;
            std::vector<int64_t> starts(padding.begin(), pad_kdim_start);

            std::vector<int64_t> ends{};
            std::transform(curr_shape.begin(),
                           curr_shape.end(),
                           pad_kdim_start,
                           std::back_inserter(ends),
                           [](auto curr_dim, auto pad_dim) { return curr_dim - pad_dim; });

            l1 = info.add_instruction(
                make_op("slice", {{"axes", axes}, {"starts", starts}, {"ends", ends}}), l1);
        }

        if(contains(info.attributes, "output_padding"))
        {
            size_t non_kdims = dims.size() * 2 - kdims;
            std::vector<int64_t> output_padding(non_kdims, 0);
            copy(info.attributes["output_padding"].ints(), std::back_inserter(output_padding));
            check_attr_sizes(kdims,
                             output_padding.size() - non_kdims,
                             "PARSE_CONV_TRANSPOSE: inconsistent output padding");
            l1 = info.add_instruction(make_op("pad", {{"pads", output_padding}}), l1);
        }

        if(contains(info.attributes, "output_shape"))
        {
            std::vector<int64_t> output_shape;
            copy(info.attributes["output_shape"].ints(), std::back_inserter(output_shape));
            check_attr_sizes(
                kdims, output_shape.size(), "PARSE_CONV_TRANSPOSE: inconsistent output shape");
            dims = to_int64_vector(l1->get_shape().lens());
            copy(dims.begin() + 2, dims.end(), curr_shape.begin());
            if(curr_shape != output_shape)
            {
                std::vector<int64_t> target_padding(dims.size() * 2 - kdims, 0);
                std::transform(output_shape.begin(),
                               output_shape.end(),
                               curr_shape.begin(),
                               std::back_inserter(target_padding),
                               [](auto out_dim, auto curr_dim) { return out_dim - curr_dim; });
                l1 = info.add_instruction(make_op("pad", {{"pads", target_padding}}), l1);
            }
        }

        return info.add_bias(args, l1, 1);
    }
};

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx