image_processing.py 8.2 KB
Newer Older
turneram's avatar
turneram committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# All pre- and post-processing methods used below are borrowed from the ONNX MOdel Zoo
# https://github.com/onnx/models/tree/master/vision/object_detection_segmentation/yolov4

import numpy as np
import cv2
from scipy import special
import colorsys
import random


# this function is from tensorflow-yolov4-tflite/core/utils.py
def image_preprocess(image, target_size, gt_boxes=None):

    ih, iw = target_size
    h, w, _ = image.shape

    scale = min(iw / w, ih / h)
    nw, nh = int(scale * w), int(scale * h)
    image_resized = cv2.resize(image, (nw, nh))

    image_padded = np.full(shape=[ih, iw, 3], fill_value=128.0)
    dw, dh = (iw - nw) // 2, (ih - nh) // 2
    image_padded[dh:nh + dh, dw:nw + dw, :] = image_resized
    image_padded = image_padded / 255.

    if gt_boxes is None:
        return image_padded

    else:
        gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]] * scale + dw
        gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]] * scale + dh
        return image_padded, gt_boxes


def get_anchors(anchors_path, tiny=False):
    '''loads the anchors from a file'''
    with open(anchors_path) as f:
        anchors = f.readline()
    anchors = np.array(anchors.split(','), dtype=np.float32)
    return anchors.reshape(3, 3, 2)


def postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE=[1, 1, 1]):
    '''define anchor boxes'''
    for i, pred in enumerate(pred_bbox):
        conv_shape = pred.shape
        output_size = conv_shape[1]
        conv_raw_dxdy = pred[:, :, :, :, 0:2]
        conv_raw_dwdh = pred[:, :, :, :, 2:4]
        xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size))
        xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1), axis=2)

        xy_grid = np.tile(np.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1])
        xy_grid = xy_grid.astype(np.float)

        pred_xy = ((special.expit(conv_raw_dxdy) * XYSCALE[i]) - 0.5 *
                   (XYSCALE[i] - 1) + xy_grid) * STRIDES[i]
        pred_wh = (np.exp(conv_raw_dwdh) * ANCHORS[i])
        pred[:, :, :, :, 0:4] = np.concatenate([pred_xy, pred_wh], axis=-1)

    pred_bbox = [np.reshape(x, (-1, np.shape(x)[-1])) for x in pred_bbox]
    pred_bbox = np.concatenate(pred_bbox, axis=0)
    return pred_bbox


def postprocess_boxes(pred_bbox, org_img_shape, input_size, score_threshold):
    '''remove boundary boxs with a low detection probability'''
    valid_scale = [0, np.inf]
    pred_bbox = np.array(pred_bbox)

    pred_xywh = pred_bbox[:, 0:4]
    pred_conf = pred_bbox[:, 4]
    pred_prob = pred_bbox[:, 5:]

    # (1) (x, y, w, h) --> (xmin, ymin, xmax, ymax)
    pred_coor = np.concatenate([
        pred_xywh[:, :2] - pred_xywh[:, 2:] * 0.5,
        pred_xywh[:, :2] + pred_xywh[:, 2:] * 0.5
    ],
                               axis=-1)
    # (2) (xmin, ymin, xmax, ymax) -> (xmin_org, ymin_org, xmax_org, ymax_org)
    org_h, org_w = org_img_shape
    resize_ratio = min(input_size / org_w, input_size / org_h)

    dw = (input_size - resize_ratio * org_w) / 2
    dh = (input_size - resize_ratio * org_h) / 2

    pred_coor[:, 0::2] = 1.0 * (pred_coor[:, 0::2] - dw) / resize_ratio
    pred_coor[:, 1::2] = 1.0 * (pred_coor[:, 1::2] - dh) / resize_ratio

    # (3) clip some boxes that are out of range
    pred_coor = np.concatenate([
        np.maximum(pred_coor[:, :2], [0, 0]),
        np.minimum(pred_coor[:, 2:], [org_w - 1, org_h - 1])
    ],
                               axis=-1)
    invalid_mask = np.logical_or((pred_coor[:, 0] > pred_coor[:, 2]),
                                 (pred_coor[:, 1] > pred_coor[:, 3]))
    pred_coor[invalid_mask] = 0

    # (4) discard some invalid boxes
    bboxes_scale = np.sqrt(
        np.multiply.reduce(pred_coor[:, 2:4] - pred_coor[:, 0:2], axis=-1))
    scale_mask = np.logical_and((valid_scale[0] < bboxes_scale),
                                (bboxes_scale < valid_scale[1]))

    # (5) discard some boxes with low scores
    classes = np.argmax(pred_prob, axis=-1)
    scores = pred_conf * pred_prob[np.arange(len(pred_coor)), classes]
    score_mask = scores > score_threshold
    mask = np.logical_and(scale_mask, score_mask)
    coors, scores, classes = pred_coor[mask], scores[mask], classes[mask]

    return np.concatenate(
        [coors, scores[:, np.newaxis], classes[:, np.newaxis]], axis=-1)


def bboxes_iou(boxes1, boxes2):
    '''calculate the Intersection Over Union value'''
    boxes1 = np.array(boxes1)
    boxes2 = np.array(boxes2)

    boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] -
                                                       boxes1[..., 1])
    boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] -
                                                       boxes2[..., 1])

    left_up = np.maximum(boxes1[..., :2], boxes2[..., :2])
    right_down = np.minimum(boxes1[..., 2:], boxes2[..., 2:])

    inter_section = np.maximum(right_down - left_up, 0.0)
    inter_area = inter_section[..., 0] * inter_section[..., 1]
    union_area = boxes1_area + boxes2_area - inter_area
    ious = np.maximum(1.0 * inter_area / union_area, np.finfo(np.float32).eps)

    return ious


def nms(bboxes, iou_threshold, sigma=0.3, method='nms'):
    """
    :param bboxes: (xmin, ymin, xmax, ymax, score, class)

    Note: soft-nms, https://arxiv.org/pdf/1704.04503.pdf
          https://github.com/bharatsingh430/soft-nms
    """
    classes_in_img = list(set(bboxes[:, 5]))
    best_bboxes = []

    for cls in classes_in_img:
        cls_mask = (bboxes[:, 5] == cls)
        cls_bboxes = bboxes[cls_mask]

        while len(cls_bboxes) > 0:
            max_ind = np.argmax(cls_bboxes[:, 4])
            best_bbox = cls_bboxes[max_ind]
            best_bboxes.append(best_bbox)
            cls_bboxes = np.concatenate(
                [cls_bboxes[:max_ind], cls_bboxes[max_ind + 1:]])
            iou = bboxes_iou(best_bbox[np.newaxis, :4], cls_bboxes[:, :4])
            weight = np.ones((len(iou), ), dtype=np.float32)

            assert method in ['nms', 'soft-nms']

            if method == 'nms':
                iou_mask = iou > iou_threshold
                weight[iou_mask] = 0.0

            if method == 'soft-nms':
                weight = np.exp(-(1.0 * iou**2 / sigma))

            cls_bboxes[:, 4] = cls_bboxes[:, 4] * weight
            score_mask = cls_bboxes[:, 4] > 0.
            cls_bboxes = cls_bboxes[score_mask]

    return best_bboxes


def read_class_names(class_file_name):
    '''loads class name from a file'''
    names = {}
    with open(class_file_name, 'r') as data:
        for ID, name in enumerate(data):
            names[ID] = name.strip('\n')
    return names


def draw_bbox(image,
              bboxes,
              classes=read_class_names("./utilities/coco.names"),
              show_label=True):
    """
    bboxes: [x_min, y_min, x_max, y_max, probability, cls_id] format coordinates.
    """

    num_classes = len(classes)
    image_h, image_w, _ = image.shape
    hsv_tuples = [(1.0 * x / num_classes, 1., 1.) for x in range(num_classes)]
    colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
    colors = list(
        map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
            colors))

    random.seed(0)
    random.shuffle(colors)
    random.seed(None)

    for i, bbox in enumerate(bboxes):
        coor = np.array(bbox[:4], dtype=np.int32)
        fontScale = 0.5
        score = bbox[4]
        class_ind = int(bbox[5])
        bbox_color = colors[class_ind]
        bbox_thick = int(0.6 * (image_h + image_w) / 600)
        c1, c2 = (coor[0], coor[1]), (coor[2], coor[3])
        cv2.rectangle(image, c1, c2, bbox_color, bbox_thick)

        if show_label:
            bbox_mess = '%s: %.2f' % (classes[class_ind], score)
            t_size = cv2.getTextSize(bbox_mess,
                                     0,
                                     fontScale,
                                     thickness=bbox_thick // 2)[0]
            cv2.rectangle(image, c1,
                          (c1[0] + t_size[0], c1[1] - t_size[1] - 3),
                          bbox_color, -1)

            cv2.putText(image,
                        bbox_mess, (c1[0], c1[1] - 2),
                        cv2.FONT_HERSHEY_SIMPLEX,
                        fontScale, (0, 0, 0),
                        bbox_thick // 2,
                        lineType=cv2.LINE_AA)

    return image