visualization_utils.py 3.55 KB
Newer Older
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib.pylab as pylab
import numpy as np

params = {
    'legend.fontsize': 'x-large',
    'figure.figsize': (6, 5),
    'axes.labelsize': 'x-large',
    'axes.titlesize': 'x-large',
    'xtick.labelsize': 'x-large',
    'ytick.labelsize': 'x-large'
}
pylab.rcParams.update(params)


#-----------------------------------------------------------
def show_n_images(imgs, titles=None, enlarge=20, cmap='jet'):

    plt.set_cmap(cmap)
    n = len(imgs)
    gs1 = gridspec.GridSpec(1, n)

    fig1 = plt.figure()
    # create a figure with the default size
    fig1.set_size_inches(enlarge, 2 * enlarge)

    for i in range(n):

        ax1 = fig1.add_subplot(gs1[i])

        ax1.imshow(imgs[i], interpolation='none')
        if (titles is not None):
            ax1.set_title(titles[i])
        ax1.set_ylim(ax1.get_ylim()[::-1])

    plt.show()


#--------------------------------------------------------------
41
from skimage import color, img_as_float
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from skimage.exposure import adjust_gamma


# Creates an image of original brain with segmentation overlay
def show_label_on_image(test_img, test_lbl):

    label_im = test_lbl

    ones = np.argwhere(label_im == 1)
    twos = np.argwhere(label_im == 2)
    threes = np.argwhere(label_im == 3)
    fours = np.argwhere(label_im == 4)

    gray_img = img_as_float(test_img / test_img.max())

    # adjust gamma of image
    # print(color.gray2rgb(gray_img))
    image = adjust_gamma(np.abs(color.gray2rgb(gray_img)), 0.45)
    #sliced_image = image.copy()

    green_multiplier = [0.35, 0.75, 0.25]
    blue_multiplier = [0, 0.5, 1.]  #[0,0.25,0.9]
    yellow_multiplier = [1, 1, 0.25]
    brown_miltiplier = [40. / 255, 26. / 255, 13. / 255]

    # change colors of segmented classes
    for i in range(len(ones)):
69
        image[ones[i][0]][ones[i][1]] = blue_multiplier
Cagri Eryilmaz's avatar
Cagri Eryilmaz committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    for i in range(len(twos)):
        image[twos[i][0]][twos[i][1]] = yellow_multiplier
    for i in range(len(threes)):
        image[threes[i][0]][threes[i][1]] = brown_miltiplier  #blue_multiplier
    for i in range(len(fours)):
        image[fours[i][0]][fours[i][1]] = green_multiplier  #yellow_multiplier

    return image


#-------------------------------------------------------------------------------------
def show_label_on_image4(test_img, label_im):

    alpha = 0.8

    img = img_as_float(test_img / test_img.max())
    rows, cols = img.shape

    # Construct a colour image to superimpose
    color_mask = np.zeros((rows, cols, 3))
    green_multiplier = [0.35, 0.75, 0.25]
    blue_multiplier = [0, 0.25, 0.9]
    yellow_multiplier = [1, 1, 0.25]
    brown_miltiplier = [40. / 255, 26. / 255, 13. / 255]

    color_mask[label_im == 1] = blue_multiplier  #[1, 0, 0]  # Red block
    color_mask[label_im == 2] = yellow_multiplier  #[0, 1, 0] # Green block
    color_mask[label_im == 3] = brown_miltiplier  #[0, 0, 1] # Blue block
    color_mask[label_im == 4] = green_multiplier  #[0, 1, 1] # Blue block

    # Construct RGB version of grey-level image
    img_color = np.dstack((img, img, img))

    # Convert the input image and color mask to Hue Saturation Value (HSV)
    # colorspace
    img_hsv = color.rgb2hsv(img_color)
    color_mask_hsv = color.rgb2hsv(color_mask)

    # Replace the hue and saturation of the original image
    # with that of the color mask
    img_hsv[..., 0] = color_mask_hsv[..., 0]
    img_hsv[..., 1] = color_mask_hsv[..., 1] * alpha

    img_masked = color.hsv2rgb(img_hsv)

    return img_masked


#------------------------------------------------------------------------------