ref_ops_nonstd_shape_test.cpp 8.44 KB
Newer Older
1
2
3
4
5
#include <iostream>
#include <vector>
#include <migraphx/literal.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ref/target.hpp>
6
#include <migraphx/generate.hpp>
7
8
9
10
11
12
13
14
#include <migraphx/verify.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/pass_manager.hpp>
#include "test.hpp"

TEST_CASE(argmax_test_nonstd_shape)
{
    migraphx::program p;
15
16
    auto* mm = p.get_main_module();
    auto dl = mm->add_literal(migraphx::generate_literal({migraphx::shape::float_type, {2, 3, 4}}));
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    auto dl_trans =
        mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 2, 0}}}), dl);
    mm->add_instruction(migraphx::make_op("argmax", {{"axis", -3}}), dl_trans);
    auto p_uncompiled = p;
    p.compile(migraphx::ref::target{});
    auto result   = p.eval({}).back();
    auto res_gold = p_uncompiled.eval({}).back();
    std::vector<int64_t> result_vec;
    result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); });
    std::vector<int64_t> res_gold_vec;
    res_gold.visit([&](auto output) { res_gold_vec.assign(output.begin(), output.end()); });
    EXPECT(migraphx::verify_range(result_vec, res_gold_vec));
}

TEST_CASE(argmin_test_nonstd_shape)
{
    migraphx::program p;
34
35
    auto* mm = p.get_main_module();
    auto dl = mm->add_literal(migraphx::generate_literal({migraphx::shape::float_type, {2, 3, 4}}));
36
37
38
39
40
41
42
43
44
45
46
47
48
49
    auto dl_trans =
        mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 2, 0}}}), dl);
    mm->add_instruction(migraphx::make_op("argmin", {{"axis", -1}}), dl_trans);
    auto p_uncompiled = p;
    p.compile(migraphx::ref::target{});
    auto result   = p.eval({}).back();
    auto res_gold = p_uncompiled.eval({}).back();
    std::vector<int64_t> result_vec;
    result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); });
    std::vector<int64_t> res_gold_vec;
    res_gold.visit([&](auto output) { res_gold_vec.assign(output.begin(), output.end()); });
    EXPECT(migraphx::verify_range(result_vec, res_gold_vec));
}

Charlie Lin's avatar
Charlie Lin committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
TEST_CASE(isnan_broadcast_test)
{
    migraphx::program p;
    auto* mm = p.get_main_module();
    migraphx::shape s0{migraphx::shape::float_type, {3}};
    migraphx::shape s1{migraphx::shape::float_type, {3, 2}};
    auto nan_val             = std::numeric_limits<float>::quiet_NaN();
    std::vector<float> data0 = {1.2, 5.2, nan_val};
    auto l0                  = mm->add_literal(migraphx::literal{s0, data0});
    auto l1                  = mm->add_instruction(
        migraphx::make_op("broadcast", {{"axis", 0}, {"out_lens", s1.lens()}}), l0);
    mm->add_instruction(migraphx::make_op("isnan"), l1);
    p.compile(migraphx::ref::target{});
    auto result = p.eval({}).back();
    std::vector<float> results_vector;
    result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
    std::vector<float> correct = {0, 0, 0, 0, 1, 1};
    EXPECT(migraphx::verify_range(results_vector, correct));
}

70
71
72
73
74
75
76
77
78
79
TEST_CASE(squeeze_transpose_test)
{
    migraphx::program p;
    auto* mm = p.get_main_module();
    auto l0 =
        mm->add_literal(migraphx::generate_literal({migraphx::shape::float_type, {4, 1, 3, 1, 3}}));
    auto l0_trans =
        mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 2, 3, 0, 4}}}), l0);
    mm->add_instruction(migraphx::make_op("squeeze"), l0_trans);
    auto p_uncompiled = p;
80
81
82
83
    // contiguous is required to read the values in standard shaped order
    auto* mm_uncompiled = p_uncompiled.get_main_module();
    mm_uncompiled->add_instruction(migraphx::make_op("contiguous"),
                                   std::prev(mm_uncompiled->end()));
84
85
86
87
    p.compile(migraphx::ref::target{});
    auto result          = p.eval({}).back();
    auto expected_result = p_uncompiled.eval({}).back();
    EXPECT(result.get_shape() == migraphx::shape{migraphx::shape::float_type, {3, 4, 3}});
88
    EXPECT(result == expected_result);
89
90
91
92
93
94
95
96
97
98
99
}

TEST_CASE(squeeze_multibroadcast_test)
{
    migraphx::program p;
    auto* mm = p.get_main_module();
    auto l0 =
        mm->add_literal(migraphx::generate_literal({migraphx::shape::float_type, {1, 3, 1, 3}}));
    auto l0_brcst = mm->add_instruction(
        migraphx::make_op("multibroadcast", {{"out_lens", {4, 1, 3, 4, 3}}}), l0);
    mm->add_instruction(migraphx::make_op("squeeze"), l0_brcst);
100
101
102
103
    auto p_uncompiled   = p;
    auto* mm_uncompiled = p_uncompiled.get_main_module();
    mm_uncompiled->add_instruction(migraphx::make_op("contiguous"),
                                   std::prev(mm_uncompiled->end()));
104
    p.compile(migraphx::ref::target{});
105
106
    auto result          = p.eval({}).back();
    auto expected_result = p_uncompiled.eval({}).back();
107
    EXPECT(result.get_shape() == migraphx::shape{migraphx::shape::float_type, {4, 3, 4, 3}});
108
    EXPECT(result == expected_result);
109
110
111
112
113
114
115
116
117
118
119
}

TEST_CASE(squeeze_slice_test)
{
    migraphx::program p;
    auto* mm = p.get_main_module();
    auto l0 =
        mm->add_literal(migraphx::generate_literal({migraphx::shape::float_type, {1, 3, 4, 3}}));
    auto l0_slice = mm->add_instruction(
        migraphx::make_op("slice", {{"axes", {2}}, {"starts", {2}}, {"ends", {3}}}), l0);
    mm->add_instruction(migraphx::make_op("squeeze"), l0_slice);
120
121
122
123
    auto p_uncompiled   = p;
    auto* mm_uncompiled = p_uncompiled.get_main_module();
    mm_uncompiled->add_instruction(migraphx::make_op("contiguous"),
                                   std::prev(mm_uncompiled->end()));
124
    p.compile(migraphx::ref::target{});
125
126
    auto result          = p.eval({}).back();
    auto expected_result = p_uncompiled.eval({}).back();
127
    EXPECT(result.get_shape() == migraphx::shape{migraphx::shape::float_type, {3, 3}});
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    EXPECT(result == expected_result);
}

TEST_CASE(unsqueeze_transpose_test)
{
    migraphx::program p;
    auto* mm = p.get_main_module();
    migraphx::shape s1{migraphx::shape::float_type, {4, 3, 3}};
    auto l0 = mm->add_literal(migraphx::generate_literal(s1));
    auto l0_trans =
        mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {2, 0, 1}}}), l0);
    mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {2}}}), l0_trans);
    auto p_uncompiled   = p;
    auto* mm_uncompiled = p_uncompiled.get_main_module();
    mm_uncompiled->add_instruction(migraphx::make_op("contiguous"),
                                   std::prev(mm_uncompiled->end()));
    p.compile(migraphx::ref::target{});
    auto result          = p.eval({}).back();
    auto expected_result = p_uncompiled.eval({}).back();
    EXPECT(result.get_shape() == migraphx::shape{migraphx::shape::float_type, {3, 4, 1, 3}});
    EXPECT(result == expected_result);
}

TEST_CASE(unsqueeze_multibroadcast_test)
{
    migraphx::program p;
    auto* mm = p.get_main_module();
    migraphx::shape s1{migraphx::shape::float_type, {4, 1, 3}};
    auto l0 = mm->add_literal(migraphx::generate_literal(s1));
    auto l0_brcst =
        mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {4, 4, 3, 3}}}), l0);
    mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {2}}}), l0_brcst);
    auto p_uncompiled   = p;
    auto* mm_uncompiled = p_uncompiled.get_main_module();
    mm_uncompiled->add_instruction(migraphx::make_op("contiguous"),
                                   std::prev(mm_uncompiled->end()));
    p.compile(migraphx::ref::target{});
    auto result          = p.eval({}).back();
    auto expected_result = p_uncompiled.eval({}).back();
    EXPECT(result.get_shape() == migraphx::shape{migraphx::shape::float_type, {4, 4, 1, 3, 3}});
    EXPECT(result == expected_result);
}

TEST_CASE(unsqueeze_slice_test)
{
    migraphx::program p;
    auto* mm = p.get_main_module();
    migraphx::shape s1{migraphx::shape::float_type, {2, 3, 4, 4}};
    auto l0       = mm->add_literal(migraphx::generate_literal(s1));
    auto l0_slice = mm->add_instruction(
        migraphx::make_op("slice", {{"axes", {3}}, {"starts", {2}}, {"ends", {3}}}), l0);
    mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1}}}), l0_slice);
    auto p_uncompiled   = p;
    auto* mm_uncompiled = p_uncompiled.get_main_module();
    mm_uncompiled->add_instruction(migraphx::make_op("contiguous"),
                                   std::prev(mm_uncompiled->end()));
    p.compile(migraphx::ref::target{});
    auto result          = p.eval({}).back();
    auto expected_result = p_uncompiled.eval({}).back();
    EXPECT(result.get_shape() == migraphx::shape{migraphx::shape::float_type, {2, 1, 3, 4, 1}});
    EXPECT(result == expected_result);
189
190
}

191
int main(int argc, const char* argv[]) { test::run(argc, argv); }