yolov4_inference.ipynb 5.92 KB
Newer Older
turneram's avatar
turneram committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Object Detection with YoloV4\n",
    "This notebook is intended to be an example of how to use MIGraphX to perform object detection. The model used below is a pre-trained yolov4 from the ONNX model zoo. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Download dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os.path\n",
    "\n",
    "if not os.path.exists(\"./utilities/coco.names\"):\n",
    "    !wget https://github.com/onnx/models/raw/master/vision/object_detection_segmentation/yolov4/dependencies/coco.names -P ./utilities/\n",
    "if not os.path.exists(\"./utilities/yolov4_anchors.txt\"):\n",
    "    !wget https://github.com/onnx/models/raw/master/vision/object_detection_segmentation/yolov4/dependencies/yolov4_anchors.txt -P ./utilities/\n",
    "if not os.path.exists(\"./utilities/input.jpg\"):\n",
    "    # The image used is from the COCO dataset (https://cocodataset.org/#explore)\n",
    "    # Other images can be tested by replacing the link below\n",
    "    image_link = \"https://farm3.staticflickr.com/2009/2306189268_88cc86b30f_z.jpg\"\n",
    "    !wget -O ./utilities/input.jpg $image_link\n",
    "if not os.path.exists(\"./utilities/yolov4.onnx\"):\n",
    "    !wget https://github.com/onnx/models/raw/master/vision/object_detection_segmentation/yolov4/model/yolov4.onnx -P ./utilities/"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Serialize model using MIGraphX Driver\n",
    "Please refer to the [MIGraphX Driver example](../../migraphx/migraphx_driver) if you would like more information about this tool."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "if not os.path.exists(\"yolov4_fp16.msgpack\"):\n",
    "    !/opt/rocm/bin/migraphx-driver compile ./utilities/yolov4.onnx --gpu --enable-offload-copy --fp16ref --binary -o yolov4_fp16.msgpack\n",
    "if not os.path.exists(\"yolov4.msgpack\"):\n",
    "    !/opt/rocm/bin/migraphx-driver compile ./utilities/yolov4.onnx --gpu --enable-offload-copy --binary -o yolov4.msgpack"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Import libraries \n",
    "Please refer to [this section](https://github.com/ROCmSoftwarePlatform/AMDMIGraphX#using-migraphx-python-module) of the main README if the migraphx module is not found. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import migraphx\n",
    "import cv2\n",
    "import time\n",
    "import numpy as np\n",
    "import image_processing as ip\n",
    "from PIL import Image"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Read and pre-process image data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "input_size = 416\n",
    "\n",
    "original_image = cv2.imread(\"./utilities/input.jpg\")\n",
    "original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)\n",
    "original_image_size = original_image.shape[:2]\n",
    "\n",
    "image_data = ip.image_preprocess(np.copy(original_image), [input_size, input_size])\n",
    "image_data = image_data[np.newaxis, ...].astype(np.float32)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load and run model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load serialized model (either single- or half-precision)\n",
    "model = migraphx.load(\"yolov4.msgpack\", format=\"msgpack\")\n",
    "#model = migraphx.load(\"yolov4_fp16.msgpack\", format=\"msgpack\")\n",
    "\n",
    "# Get the name of the input parameter and convert image data to an MIGraphX argument\n",
    "input_name = next(iter(model.get_parameter_shapes()))\n",
    "input_argument = migraphx.argument(image_data)\n",
    "\n",
    "# Evaluate the model and convert the outputs for post-processing\n",
    "outputs = model.run({input_name: input_argument})\n",
    "detections = [np.ndarray(shape=out.get_shape().lens(), buffer=np.array(out.tolist()), dtype=float) for out in outputs]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Post-process the model outputs and display image with detection bounding boxes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "ANCHORS = \"./utilities/yolov4_anchors.txt\"\n",
    "STRIDES = [8, 16, 32]\n",
    "XYSCALE = [1.2, 1.1, 1.05]\n",
    "\n",
    "ANCHORS = ip.get_anchors(ANCHORS)\n",
    "STRIDES = np.array(STRIDES)\n",
    "\n",
    "pred_bbox = ip.postprocess_bbbox(detections, ANCHORS, STRIDES, XYSCALE)\n",
    "bboxes = ip.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25)\n",
    "bboxes = ip.nms(bboxes, 0.213, method='nms')\n",
    "image = ip.draw_bbox(original_image, bboxes)\n",
    "\n",
    "image = Image.fromarray(image)\n",
    "image.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "name": "python3",
   "display_name": "Python 3.8.3 64-bit ('base': conda)"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.3"
  },
  "metadata": {
   "interpreter": {
    "hash": "d7283edef085bb46d38a3069bce96b3de1793019cb5bd7b1e86bf9785b67f304"
   }
  },
  "interpreter": {
   "hash": "d7283edef085bb46d38a3069bce96b3de1793019cb5bd7b1e86bf9785b67f304"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}