insert_pad.cpp 3.25 KB
Newer Older
kahmed10's avatar
kahmed10 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <migraphx/insert_pad.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/stringutils.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {

static void update_op(const instruction_ref& input, const instruction_ref& ins, module& m)
{
    auto op         = ins->get_operator();
    auto val        = op.to_value();
    auto op_padding = val.at("padding").to_vector<size_t>();

charlie's avatar
charlie committed
20
21
22
23
24
    if(input->get_shape().dynamic())
    {
        return;
    }

kahmed10's avatar
kahmed10 committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    auto kdims = input->get_shape().lens().size() - 2;
    if(std::equal(op_padding.begin(),
                  op_padding.begin() + kdims,
                  op_padding.begin() + kdims,
                  op_padding.end()))
        return;

    std::vector<int64_t> padding(input->get_shape().lens().size() * 2, 0);
    std::vector<size_t> pads_l(op_padding.begin(), op_padding.begin() + kdims);
    std::vector<size_t> pads_r(op_padding.begin() + kdims, op_padding.end());
    op_padding = std::vector<size_t>(kdims * 2, 0);
    op.from_value({{"padding", op_padding}});

    std::copy(pads_l.begin(), pads_l.end(), padding.begin() + 2);
    std::copy(pads_r.begin(), pads_r.end(), padding.begin() + kdims + 2 + 2);

    auto pad_op = m.insert_instruction(ins, op::pad{padding}, input);

    auto new_inputs    = ins->inputs();
    new_inputs.front() = pad_op;

    m.replace_instruction(ins, op, new_inputs);
}

static void update_pooling(const instruction_ref& input, const instruction_ref& ins, module& m)
{
    auto op = any_cast<op::pooling>(ins->get_operator());
52
    if(op.mode == op::pooling_mode::average)
kahmed10's avatar
kahmed10 committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    {
        return;
    }
    auto kdims = input->get_shape().lens().size() - 2;
    if(std::equal(op.padding.begin(),
                  op.padding.begin() + kdims,
                  op.padding.begin() + kdims,
                  op.padding.end()))
        return;

    std::vector<int64_t> padding(input->get_shape().lens().size() * 2, 0);
    std::vector<size_t> pads_l(op.padding.begin(), op.padding.begin() + kdims);
    std::vector<size_t> pads_r(op.padding.begin() + kdims, op.padding.end());
    op.padding = std::vector<size_t>(kdims * 2, 0);
    std::copy(pads_l.begin(), pads_l.end(), padding.begin() + 2);
    std::copy(pads_r.begin(), pads_r.end(), padding.begin() + kdims + 2 + 2);

    // maxpool uses lowest value for padding
    float pad_val = std::numeric_limits<float>::lowest();
    auto pad_op   = m.insert_instruction(ins, op::pad{padding, pad_val}, input);

    auto new_inputs    = ins->inputs();
    new_inputs.front() = pad_op;

    m.replace_instruction(ins, op, new_inputs);
}

void insert_pad::apply(module& m) const
{
    for(auto ins : iterator_for(m))
    {
        const std::string& op_name = ins->name();
        if(op_name != "convolution" and op_name != "im2col" and op_name != "pooling")
            continue;
        auto input = ins->inputs().front();
        if(op_name == "convolution" or op_name == "im2col")
            update_op(input, ins, m);
        else if(op_name == "pooling")
            update_pooling(input, ins, m);
    }
}

} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx